#include "Scene.h" #include #include #include #include /* pair */ #include #include /* sort() */ #include /* binary_function */ #include /* typeid operator support */ #include #include "BMP.h" #include "util/Color.h" #include "shapes/Shape.h" #include "Light.h" #include "Lighting.h" using namespace std; Scene::Scene(const map & options, const char * filename) { m_width = 800; m_height = 600; m_multisample_level = 1; m_output_file_name = "fart.bmp"; m_vfov = 60.0; m_verbose = false; m_data = NULL; m_ambient_light = Color(0.1, 0.1, 0.1); m_max_depth = 10; load(filename); /* after loading the scene file, apply any command-line render options */ for (map::const_iterator it = options.begin(); it != options.end(); it++) { if (it->first == "width") { m_width = atoi(it->second); } else if (it->first == "height") { m_height = atoi(it->second); } else if (it->first == "multisample") { m_multisample_level = atoi(it->second); } else if (it->first == "field-of-view") { m_vfov = atof(it->second); } else if (it->first == "output-file") { m_output_file_name = it->second; } else if (it->first == "verbose") { m_verbose = true; } } /* view plane distance is calculated based on the field of view */ m_view_plane_dist = (m_height / 2.0) / tan(M_PI * m_vfov / 360.0); m_sample_span = 1.0 / m_multisample_level; m_half_sample_span = m_sample_span / 2.0; m_multisample_level_squared = m_multisample_level * m_multisample_level; } Scene::~Scene() { if (m_data != NULL) delete m_data; } void Scene::render() { if (m_verbose) { cout << " *** Beginning scene render ***" << endl; cout << "Parameters:" << endl; cout << "----------------------------------------" << endl; cout << " Width: " << m_width << endl; cout << " Height: " << m_height << endl; cout << " Multisample Level: " << m_multisample_level << endl; cout << " Vertical Field of View: " << m_vfov << endl; cout << "----------------------------------------" << endl; } m_data = new unsigned char[m_width * m_height * 3]; for (int i = 0; i < m_height; i++) { for (int j = 0; j < m_width; j++) { renderPixel(j, i, &m_data[3 * (m_width * i + j)]); } } if (m_verbose) { cout << " *** Ending scene render ***" << endl; cout << "Writing output file '" << m_output_file_name << '\'' << endl; } BMP outputImage(m_output_file_name.c_str(), m_width, m_height, m_data); } void Scene::renderPixel(int x, int y, unsigned char * pixel) { /* calculate the ray going from the camera through this pixel */ Color finalColor; for (int i = 0; i < m_multisample_level; i++) { for (int j = 0; j < m_multisample_level; j++) { double rx = (x + i * m_sample_span + m_half_sample_span) - (m_width / 2.0); double rz = (m_height / 2.0) - (y + j * m_sample_span + m_half_sample_span); Ray ray(Vector(0, 0, 0), Vector(rx, m_view_plane_dist, rz)); finalColor += traceRay(ray); } } /* take the average of all the samples as the final pixel value */ pixel[BMP_RED] = (unsigned char) (0xFF * finalColor.r / m_multisample_level_squared); pixel[BMP_GREEN] = (unsigned char) (0xFF * finalColor.g / m_multisample_level_squared); pixel[BMP_BLUE] = (unsigned char) (0xFF * finalColor.b / m_multisample_level_squared); } Color Scene::traceRay(const Ray & ray) { return traceRayDepth(ray, m_max_depth); } Color Scene::traceRayDepth(const Ray & ray, int depth) { Color color; ShapeDistance hit = getRayClosestHit(ray); if ( ! hit.shape.isNull() ) { /* compute the Phong lighting for each hit */ refptr material = hit.shape->getMaterial(); Vector surfacePoint = ray[hit.dist]; color += Lighting::computePhong(material, m_lights, ray, surfacePoint, hit.shape->getNormalAt(surfacePoint), m_ambient_light); } return color; } Scene::ShapeDistance Scene::getRayClosestHit(const Ray & ray) { ShapeDistance hit; bool foundOne = false; /* loop through all shapes in the scene */ for (vector< refptr >::iterator it = m_shapes.begin(); it != m_shapes.end(); it++) { Shape::IntersectionList intersections = (*it)->intersect(*it, ray); for (int i = 0, num_results = intersections.size(); i < num_results; i++) { refptr shape = intersections[i].shape; const Vector & isect_point = intersections[i].vector; Vector normal = shape->getNormalAt(isect_point); double intersect_dist = (isect_point - ray.getOrigin()).mag(); if (foundOne == false || intersect_dist < hit.dist) { hit.shape = shape; hit.dist = intersect_dist; foundOne = true; } } } return hit; } bool operator<(const Scene::ShapeDistance & sd1, const Scene::ShapeDistance & sd2) { return sd1.dist < sd2.dist; }