fart/main/Scene.cc
2009-03-03 04:30:46 +00:00

240 lines
7.5 KiB
C++

#include "Scene.h"
#include <stdlib.h>
#include <string>
#include <vector>
#include <utility> /* pair */
#include <map>
#include <algorithm> /* sort() */
#include <functional> /* binary_function */
#include <typeinfo> /* typeid operator support */
#include <math.h>
#include "BMP.h"
#include "util/Color.h"
#include "shapes/Shape.h"
#include "Light.h"
#include "Lighting.h"
using namespace std;
Scene::Scene(const map<string, const char *> & options,
const char * filename)
{
m_width = 800;
m_height = 600;
m_multisample_level = 1;
m_output_file_name = "fart.bmp";
m_vfov = 60.0;
m_verbose = true;
m_data = NULL;
m_ambient_light = Color(0.1, 0.1, 0.1);
m_max_depth = 10;
m_transforms.push(Transform());
load(filename);
/* after loading the scene file, apply any command-line render options */
for (map<const string, const char *>::const_iterator it = options.begin();
it != options.end();
it++)
{
if (it->first == "width")
{
m_width = atoi(it->second);
}
else if (it->first == "height")
{
m_height = atoi(it->second);
}
else if (it->first == "multisample")
{
m_multisample_level = atoi(it->second);
}
else if (it->first == "field-of-view")
{
m_vfov = atof(it->second);
}
else if (it->first == "output-file")
{
m_output_file_name = it->second;
}
else if (it->first == "verbose")
{
m_verbose = true;
}
}
/* view plane distance is calculated based on the field of view */
m_view_plane_dist = (m_height / 2.0) / tan(M_PI * m_vfov / 360.0);
m_sample_span = 1.0 / m_multisample_level;
m_half_sample_span = m_sample_span / 2.0;
m_multisample_level_squared = m_multisample_level * m_multisample_level;
}
Scene::~Scene()
{
if (m_data != NULL)
delete m_data;
}
void Scene::render()
{
if (m_verbose)
{
cout << " *** Beginning scene render ***" << endl;
cout << "Parameters:" << endl;
cout << "----------------------------------------" << endl;
cout << " Width: " << m_width << endl;
cout << " Height: " << m_height << endl;
cout << " Multisample Level: " << m_multisample_level << endl;
cout << " Vertical Field of View: " << m_vfov << endl;
cout << "----------------------------------------" << endl;
}
m_data = new unsigned char[m_width * m_height * 3];
for (int i = 0; i < m_height; i++)
{
for (int j = 0; j < m_width; j++)
{
renderPixel(j, i, &m_data[3 * (m_width * i + j)]);
}
}
if (m_verbose)
{
cout << " *** Ending scene render ***" << endl;
cout << "Writing output file '" << m_output_file_name << '\'' << endl;
}
BMP outputImage(m_output_file_name.c_str(), m_width, m_height, m_data);
}
void Scene::renderPixel(int x, int y, unsigned char * pixel)
{
/* calculate the ray going from the camera through this pixel */
Color finalColor;
for (int i = 0; i < m_multisample_level; i++)
{
for (int j = 0; j < m_multisample_level; j++)
{
double rx = (x + i * m_sample_span + m_half_sample_span)
- (m_width / 2.0);
double rz = (m_height / 2.0)
- (y + j * m_sample_span + m_half_sample_span);
Ray ray(Vector(0, 0, 0), Vector(rx, m_view_plane_dist, rz));
finalColor += traceRay(ray);
}
}
/* take the average of all the samples as the final pixel value */
pixel[BMP_RED] = (unsigned char)
(0xFF * finalColor.r / m_multisample_level_squared);
pixel[BMP_GREEN] = (unsigned char)
(0xFF * finalColor.g / m_multisample_level_squared);
pixel[BMP_BLUE] = (unsigned char)
(0xFF * finalColor.b / m_multisample_level_squared);
}
Color Scene::traceRay(const Ray & ray)
{
return traceRayRecurse(ray, m_max_depth, 1.0);
}
/**
* factor: the proportion of the final color that this computation is worth
*/
Color Scene::traceRayRecurse(const Ray & ray, int depth, double factor)
{
Color color;
ShapeDistance hit = getRayClosestHit(ray);
if ( ! hit.shape.isNull() )
{
/* compute the Phong lighting for each hit */
refptr<Material> material = hit.shape->getMaterial();
Vector surfacePoint = ray[hit.dist];
Vector surfaceNormal = hit.shape->getNormalAt(surfacePoint);
color = Lighting::computePhong(material,
m_lights,
ray,
surfacePoint,
surfaceNormal,
m_ambient_light);
if (depth > 0 && factor > SCENE_FACTOR_THRESHOLD)
{
double reflectance = material->getReflectance();
if (factor * reflectance > SCENE_FACTOR_THRESHOLD)
{
color *= (1.0 - reflectance);
Vector reflected_direction =
(-ray.getDirection()).reflect(surfaceNormal);
Ray newRay(surfacePoint, reflected_direction);
Vector jitter_surface_point = newRay[0.001];
Ray jitterNewRay(jitter_surface_point, reflected_direction);
Color c = traceRayRecurse(jitterNewRay,
depth - 1,
factor * reflectance);
color += c * reflectance;
}
double transparency = material->getTransparency();
if (factor * transparency > SCENE_FACTOR_THRESHOLD)
{
color *= (1.0 - transparency);
Vector jitter_surface_point = ray[hit.dist + 0.001];
Ray newRay(jitter_surface_point, ray.getDirection());
Color c = traceRayRecurse(newRay,
depth - 1,
factor * transparency);
color += c * transparency;
}
}
}
return color;
}
Scene::ShapeDistance Scene::getRayClosestHit(const Ray & ray)
{
ShapeDistance hit;
bool foundOne = false;
/* loop through all shapes in the scene */
for (vector< refptr<Shape> >::iterator it = m_shapes.begin();
it != m_shapes.end();
it++)
{
Shape::IntersectionList intersections = (*it)->intersect(*it, ray);
for (int i = 0, num_results = intersections.size();
i < num_results;
i++)
{
refptr<Shape> shape = intersections[i].shape;
const Vector & isect_point = intersections[i].vector;
Vector normal = shape->getNormalAt(isect_point);
double intersect_dist = (isect_point - ray.getOrigin()).mag();
if (foundOne == false || intersect_dist < hit.dist)
{
hit.shape = shape;
hit.dist = intersect_dist;
foundOne = true;
}
}
}
return hit;
}
bool operator<(const Scene::ShapeDistance & sd1,
const Scene::ShapeDistance & sd2)
{
return sd1.dist < sd2.dist;
}