206 lines
5.8 KiB
C++
206 lines
5.8 KiB
C++
|
|
#include "Scene.h"
|
|
#include <stdlib.h>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <utility> /* pair */
|
|
#include <map>
|
|
#include <algorithm> /* sort() */
|
|
#include <functional> /* binary_function */
|
|
#include <math.h>
|
|
#include "BMP.h"
|
|
#include "shapes/Shape.h"
|
|
#include "shapes/Sphere.h"
|
|
#include "PointLight.h"
|
|
using namespace std;
|
|
|
|
Scene::Scene(map<string, const char *> options,
|
|
const char * filename)
|
|
{
|
|
m_width = 800;
|
|
m_height = 600;
|
|
m_multisample_level = 1;
|
|
m_output_file_name = "fart.bmp";
|
|
m_vfov = 60.0;
|
|
m_verbose = false;
|
|
m_data = NULL;
|
|
|
|
load(filename);
|
|
|
|
/* after loading the scene file, apply any command-line render options */
|
|
for (map<string, const char *>::iterator it = options.begin();
|
|
it != options.end();
|
|
it++)
|
|
{
|
|
if (it->first == "width")
|
|
{
|
|
m_width = atoi(it->second);
|
|
}
|
|
else if (it->first == "height")
|
|
{
|
|
m_height = atoi(it->second);
|
|
}
|
|
else if (it->first == "multisample")
|
|
{
|
|
m_multisample_level = atoi(it->second);
|
|
}
|
|
else if (it->first == "field-of-view")
|
|
{
|
|
m_vfov = atof(it->second);
|
|
}
|
|
else if (it->first == "output-file")
|
|
{
|
|
m_output_file_name = it->second;
|
|
}
|
|
else if (it->first == "verbose")
|
|
{
|
|
m_verbose = true;
|
|
}
|
|
}
|
|
|
|
/* view plane distance is calculated based on the field of view */
|
|
m_view_plane_dist = (m_height / 2.0) / tan(M_PI * m_vfov / 360.0);
|
|
m_sample_span = 1.0 / m_multisample_level;
|
|
m_half_sample_span = m_sample_span / 2.0;
|
|
m_multisample_level_squared = m_multisample_level * m_multisample_level;
|
|
}
|
|
|
|
Scene::~Scene()
|
|
{
|
|
if (m_data != NULL)
|
|
delete m_data;
|
|
for (vector<Shape *>::iterator it = m_shapes.begin();
|
|
it != m_shapes.end();
|
|
it++)
|
|
{
|
|
delete (*it);
|
|
}
|
|
for (vector<Light *>::iterator it = m_lights.begin();
|
|
it != m_lights.end();
|
|
it++)
|
|
{
|
|
delete (*it);
|
|
}
|
|
}
|
|
|
|
void Scene::load(const char * filename)
|
|
{
|
|
/* TODO: parse file somehow */
|
|
Shape * shape = new Sphere(1.0);
|
|
m_transform.translate(1.0, 5.0, 0.5);
|
|
shape->setTransform(m_transform);
|
|
m_shapes.push_back(shape);
|
|
|
|
Light * light = new PointLight(Vector(-1, -1, 1));
|
|
m_lights.push_back(light);
|
|
}
|
|
|
|
void Scene::render()
|
|
{
|
|
if (m_verbose)
|
|
{
|
|
cout << " *** Beginning scene render ***" << endl;
|
|
cout << "Parameters:" << endl;
|
|
cout << "----------------------------------------" << endl;
|
|
cout << " Width: " << m_width << endl;
|
|
cout << " Height: " << m_height << endl;
|
|
cout << " Multisample Level: " << m_multisample_level << endl;
|
|
cout << " Vertical Field of View: " << m_vfov << endl;
|
|
cout << "----------------------------------------" << endl;
|
|
}
|
|
|
|
m_data = new unsigned char[m_width * m_height * 3];
|
|
|
|
for (int i = 0; i < m_height; i++)
|
|
{
|
|
for (int j = 0; j < m_width; j++)
|
|
{
|
|
renderPixel(j, i, &m_data[3 * (m_width * i + j)]);
|
|
}
|
|
}
|
|
|
|
if (m_verbose)
|
|
{
|
|
cout << " *** Ending scene render ***" << endl;
|
|
cout << "Writing output file '" << m_output_file_name << '\'' << endl;
|
|
}
|
|
BMP outputImage(m_output_file_name.c_str(), m_width, m_height, m_data);
|
|
}
|
|
|
|
void Scene::renderPixel(int x, int y, unsigned char * pixel)
|
|
{
|
|
/* calculate the ray going from the camera through this pixel */
|
|
double red = 0.0, green = 0.0, blue = 0.0;
|
|
for (int i = 0; i < m_multisample_level; i++)
|
|
{
|
|
for (int j = 0; j < m_multisample_level; j++)
|
|
{
|
|
double rx = (x + i * m_sample_span + m_half_sample_span)
|
|
- (m_width / 2.0);
|
|
double rz = (m_height / 2.0)
|
|
- (y + j * m_sample_span + m_half_sample_span);
|
|
|
|
Ray ray(Vector(0, 0, 0), Vector(rx, m_view_plane_dist, rz));
|
|
|
|
Vector color = traceRay(ray);
|
|
|
|
red += color[0];
|
|
green += color[1];
|
|
blue += color[2];
|
|
}
|
|
}
|
|
|
|
/* take the average of all the samples as the final pixel value */
|
|
pixel[BMP_RED] = (unsigned char) (0xFF * red / m_multisample_level_squared);
|
|
pixel[BMP_GREEN] = (unsigned char) (0xFF * green / m_multisample_level_squared);
|
|
pixel[BMP_BLUE] = (unsigned char) (0xFF * blue / m_multisample_level_squared);
|
|
}
|
|
|
|
Vector Scene::traceRay(const Ray & ray)
|
|
{
|
|
Vector color;
|
|
|
|
vector<ShapeDistance> hits = getRayHits(ray);
|
|
if (hits.size() > 0)
|
|
{
|
|
color[0] = color[1] = color[2] = 1.0;
|
|
}
|
|
|
|
return color;
|
|
}
|
|
|
|
vector<Scene::ShapeDistance> Scene::getRayHits(const Ray & ray)
|
|
{
|
|
vector<ShapeDistance> hits;
|
|
|
|
/* loop through all shapes in the scene */
|
|
for (vector<Shape *>::iterator it = m_shapes.begin();
|
|
it != m_shapes.end();
|
|
it++)
|
|
{
|
|
Solver::Result intersections = (*it)->intersect(ray);
|
|
|
|
for (int i = 0; i < intersections.numResults; i++)
|
|
{
|
|
Vector normal =
|
|
(*it)->getNormalAt(ray[intersections.results[i]]);
|
|
double dot = normal % ray.getDirection();
|
|
if (dot < 0.0) /* cull back faces */
|
|
{
|
|
hits.push_back(ShapeDistance(*it, intersections.results[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* now that we have ALL the hits, sort them by distance */
|
|
sort(hits.begin(), hits.end());
|
|
|
|
return hits;
|
|
}
|
|
|
|
bool operator<(const Scene::ShapeDistance & sd1,
|
|
const Scene::ShapeDistance & sd2)
|
|
{
|
|
return sd1.second < sd2.second;
|
|
}
|