327 lines
10 KiB
C++
327 lines
10 KiB
C++
|
|
#include "Scene.h"
|
|
#include <stdlib.h>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <utility> /* pair */
|
|
#include <map>
|
|
#include <algorithm> /* sort() */
|
|
#include <functional> /* binary_function */
|
|
#include <typeinfo> /* typeid operator support */
|
|
#include <math.h>
|
|
#include "BMP.h"
|
|
#include "util/Color.h"
|
|
#include "shapes/Shape.h"
|
|
#include "Light.h"
|
|
|
|
using namespace std;
|
|
|
|
Scene::Scene(const map<string, const char *> & options,
|
|
const char * filename)
|
|
{
|
|
m_width = 800;
|
|
m_height = 600;
|
|
m_multisample_level = 1;
|
|
m_output_file_name = "fart.bmp";
|
|
m_vfov = 60.0;
|
|
m_verbose = true;
|
|
m_data = NULL;
|
|
m_ambient_light = Color(0.1, 0.1, 0.1);
|
|
m_max_depth = 10;
|
|
m_transforms.push(Transform());
|
|
|
|
load(filename);
|
|
|
|
/* after loading the scene file, apply any command-line render options */
|
|
for (map<const string, const char *>::const_iterator it = options.begin();
|
|
it != options.end();
|
|
it++)
|
|
{
|
|
if (it->first == "width")
|
|
{
|
|
m_width = atoi(it->second);
|
|
}
|
|
else if (it->first == "height")
|
|
{
|
|
m_height = atoi(it->second);
|
|
}
|
|
else if (it->first == "multisample")
|
|
{
|
|
m_multisample_level = atoi(it->second);
|
|
}
|
|
else if (it->first == "field-of-view")
|
|
{
|
|
m_vfov = atof(it->second);
|
|
}
|
|
else if (it->first == "output-file")
|
|
{
|
|
m_output_file_name = it->second;
|
|
}
|
|
else if (it->first == "verbose")
|
|
{
|
|
m_verbose = true;
|
|
}
|
|
}
|
|
|
|
/* view plane distance is calculated based on the field of view */
|
|
m_view_plane_dist = (m_height / 2.0) / tan(M_PI * m_vfov / 360.0);
|
|
m_sample_span = 1.0 / m_multisample_level;
|
|
m_half_sample_span = m_sample_span / 2.0;
|
|
m_multisample_level_squared = m_multisample_level * m_multisample_level;
|
|
}
|
|
|
|
Scene::~Scene()
|
|
{
|
|
if (m_data != NULL)
|
|
delete m_data;
|
|
}
|
|
|
|
void Scene::render()
|
|
{
|
|
if (m_verbose)
|
|
{
|
|
cout << " *** Beginning scene render ***" << endl;
|
|
cout << "Parameters:" << endl;
|
|
cout << "----------------------------------------" << endl;
|
|
cout << " Width: " << m_width << endl;
|
|
cout << " Height: " << m_height << endl;
|
|
cout << " Multisample Level: " << m_multisample_level << endl;
|
|
cout << " Vertical Field of View: " << m_vfov << endl;
|
|
cout << "----------------------------------------" << endl;
|
|
}
|
|
|
|
m_data = new unsigned char[m_width * m_height * 3];
|
|
|
|
for (int i = 0; i < m_height; i++)
|
|
{
|
|
for (int j = 0; j < m_width; j++)
|
|
{
|
|
renderPixel(j, i, &m_data[3 * (m_width * i + j)]);
|
|
}
|
|
}
|
|
|
|
if (m_verbose)
|
|
{
|
|
cout << " *** Ending scene render ***" << endl;
|
|
cout << "Writing output file '" << m_output_file_name << '\'' << endl;
|
|
}
|
|
BMP outputImage(m_output_file_name.c_str(), m_width, m_height, m_data);
|
|
}
|
|
|
|
void Scene::renderPixel(int x, int y, unsigned char * pixel)
|
|
{
|
|
/* calculate the ray going from the camera through this pixel */
|
|
Color finalColor;
|
|
for (int i = 0; i < m_multisample_level; i++)
|
|
{
|
|
for (int j = 0; j < m_multisample_level; j++)
|
|
{
|
|
double rx = (x + i * m_sample_span + m_half_sample_span)
|
|
- (m_width / 2.0);
|
|
double rz = (m_height / 2.0)
|
|
- (y + j * m_sample_span + m_half_sample_span);
|
|
|
|
Ray ray(Vector(0, 0, 0), Vector(rx, m_view_plane_dist, rz));
|
|
|
|
finalColor += traceRay(ray);
|
|
}
|
|
}
|
|
|
|
/* take the average of all the samples as the final pixel value */
|
|
pixel[BMP_RED] = (unsigned char)
|
|
(0xFF * finalColor.r / m_multisample_level_squared);
|
|
pixel[BMP_GREEN] = (unsigned char)
|
|
(0xFF * finalColor.g / m_multisample_level_squared);
|
|
pixel[BMP_BLUE] = (unsigned char)
|
|
(0xFF * finalColor.b / m_multisample_level_squared);
|
|
}
|
|
|
|
Color Scene::traceRay(const Ray & ray)
|
|
{
|
|
return traceRayRecurse(ray, m_max_depth, 1.0);
|
|
}
|
|
|
|
/**
|
|
* factor: the proportion of the final color that this computation is worth
|
|
*/
|
|
Color Scene::traceRayRecurse(const Ray & ray, int depth, double factor)
|
|
{
|
|
Color color;
|
|
|
|
ShapeDistance hit = getRayClosestHit(ray);
|
|
|
|
if ( ! hit.shape.isNull() )
|
|
{
|
|
/* compute the Phong lighting for each hit */
|
|
refptr<Material> material = hit.shape->getMaterial();
|
|
|
|
Vector surfacePoint = ray[hit.dist];
|
|
Vector surfaceNormal = hit.shape->getNormalAt(surfacePoint);
|
|
|
|
color = computePhong(material,
|
|
ray,
|
|
surfacePoint,
|
|
surfaceNormal);
|
|
|
|
if (depth > 0 && factor > SCENE_FACTOR_THRESHOLD)
|
|
{
|
|
double reflectance = material->getReflectance();
|
|
if (factor * reflectance > SCENE_FACTOR_THRESHOLD)
|
|
{
|
|
color *= (1.0 - reflectance);
|
|
Vector reflected_direction =
|
|
(-ray.getDirection()).reflect(surfaceNormal);
|
|
Ray newRay(surfacePoint, reflected_direction);
|
|
Vector jitter_surface_point = newRay[0.0001];
|
|
Ray jitterNewRay(jitter_surface_point, reflected_direction);
|
|
Color c = traceRayRecurse(jitterNewRay,
|
|
depth - 1,
|
|
factor * reflectance);
|
|
color += c * reflectance;
|
|
}
|
|
|
|
double transparency = material->getTransparency();
|
|
if (factor * transparency > SCENE_FACTOR_THRESHOLD)
|
|
{
|
|
color *= (1.0 - transparency);
|
|
Vector jitter_surface_point = ray[hit.dist + 0.0001];
|
|
Ray newRay(jitter_surface_point, ray.getDirection());
|
|
Color c = traceRayRecurse(newRay,
|
|
depth - 1,
|
|
factor * transparency);
|
|
color += c * transparency;
|
|
}
|
|
}
|
|
}
|
|
|
|
return color;
|
|
}
|
|
|
|
Scene::ShapeDistance Scene::getRayClosestHit(const Ray & ray)
|
|
{
|
|
ShapeDistance hit;
|
|
bool foundOne = false;
|
|
|
|
/* loop through all shapes in the scene */
|
|
for (vector< refptr<Shape> >::iterator it = m_shapes.begin();
|
|
it != m_shapes.end();
|
|
it++)
|
|
{
|
|
Shape::IntersectionList intersections = (*it)->intersect(*it, ray);
|
|
|
|
for (int i = 0, num_results = intersections.size();
|
|
i < num_results;
|
|
i++)
|
|
{
|
|
refptr<Shape> shape = intersections[i].shape;
|
|
const Vector & isect_point = intersections[i].vector;
|
|
Vector normal = shape->getNormalAt(isect_point);
|
|
double intersect_dist = (isect_point - ray.getOrigin()).mag();
|
|
if (foundOne == false || intersect_dist < hit.dist)
|
|
{
|
|
hit.shape = shape;
|
|
hit.dist = intersect_dist;
|
|
foundOne = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return hit;
|
|
}
|
|
|
|
Color Scene::computePhong(const refptr<Material> material,
|
|
const Ray & viewRay,
|
|
const Vector & surfacePoint,
|
|
const Vector & surfaceNormal)
|
|
{
|
|
Color result = m_ambient_light * material->getAmbientColor();
|
|
|
|
Vector viewDirection = -viewRay.getDirection();
|
|
double shininess = material->getShininess();
|
|
const Color & diffuseColor = material->getDiffuseColor();
|
|
const Color & specularColor = material->getSpecularColor();
|
|
|
|
for (std::vector< refptr<Light> >::const_iterator it = m_lights.begin();
|
|
it != m_lights.end();
|
|
it++)
|
|
{
|
|
Vector directionToLight = (*it)->getPosition() - surfacePoint;
|
|
directionToLight.normalize();
|
|
Vector reflectedLightDirection =
|
|
directionToLight.reflect(surfaceNormal);
|
|
|
|
Ray surfaceToLight(surfacePoint, directionToLight);
|
|
double light_contribution =
|
|
calculateLightContribution(surfaceToLight.shift(0.0001), *it);
|
|
|
|
if (light_contribution > 0.0)
|
|
{
|
|
/* calculate the diffuse term */
|
|
double diffuse_coef = directionToLight % surfaceNormal;
|
|
if (diffuse_coef > 0.0)
|
|
{
|
|
result += diffuseColor
|
|
* (*it)->getDiffuseColor()
|
|
* diffuse_coef
|
|
* light_contribution;
|
|
}
|
|
|
|
/* calculate the specular term */
|
|
double specular_coef = reflectedLightDirection % viewDirection;
|
|
if (specular_coef > 0.0)
|
|
{
|
|
result += specularColor
|
|
* (*it)->getSpecularColor()
|
|
* pow(specular_coef, shininess)
|
|
* light_contribution;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* TODO: figure out better scaling */
|
|
if (result.r > 1.0)
|
|
result.r = 1.0;
|
|
if (result.g > 1.0)
|
|
result.g = 1.0;
|
|
if (result.b > 1.0)
|
|
result.b = 1.0;
|
|
|
|
return result;
|
|
}
|
|
|
|
double Scene::calculateLightContribution(const Ray & toLight,
|
|
refptr<Light> light)
|
|
{
|
|
double contrib = 1.0;
|
|
double dist_to_light = toLight.getOrigin().dist_to(light->getPosition());
|
|
double dist_so_far = 0.0;
|
|
|
|
Ray currentRay = toLight;
|
|
|
|
for (;;)
|
|
{
|
|
ShapeDistance hit = getRayClosestHit(currentRay);
|
|
|
|
if ( hit.shape.isNull() )
|
|
break;
|
|
|
|
if ( dist_so_far + hit.dist > dist_to_light )
|
|
break;
|
|
|
|
contrib *= hit.shape->getMaterial()->getTransparency();
|
|
|
|
if ( contrib < SCENE_FACTOR_THRESHOLD )
|
|
break;
|
|
|
|
dist_so_far += hit.dist + 0.0001;
|
|
}
|
|
|
|
return contrib;
|
|
}
|
|
|
|
bool operator<(const Scene::ShapeDistance & sd1,
|
|
const Scene::ShapeDistance & sd2)
|
|
{
|
|
return sd1.dist < sd2.dist;
|
|
}
|