updating hw.tex, added src from hw7

git-svn-id: svn://anubis/gvsu@227 45c1a28c-8058-47b2-ae61-ca45b979098e
This commit is contained in:
josh 2008-11-01 16:56:50 +00:00
parent 0c6614e89e
commit 446b8464b3
6 changed files with 341 additions and 43 deletions

View File

@ -12,8 +12,8 @@
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\fancyhf{}
\lhead{HW Chap. 7\\\ \\\ }
\rhead{Josh Holtrop\\2008-10-15\\CS 677}
\lhead{HW Chap. 5\\\ \\\ }
\rhead{Josh Holtrop\\2008-11-05\\CS 677}
\rfoot{\thepage}
\begin{document}
@ -21,54 +21,31 @@
\noindent
\begin{enumerate}
\item[1.]{
Break the ``parallel region'' into a function accepting a \texttt{void *}
parameter.
Before the ``parallel region'' create a \texttt{for} loop which loops
\textit{n} times (where \textit{n} is the number of threads),
invoking \texttt{pthread\_create()} once for each thread.
Any variables local to the function containing the ``parallel region''
that the ``parallel region'' function needs access to
would have to be stored as pointers in a structure whose address was
passed as an argument to the thread function.
Then, the thread would run the code in the ``parallel region''.
After the region, a \texttt{for} loop would exist to loop over all
the threads created in the first loop and execute \texttt{pthread\_join()}
for each one.
The best known sequential sorting algorithms have a complexity of $O (n \log n)$.
So, the speedup factor is given by
$$ s = \frac{T_s}{T_p} = \frac{n \log n}{cn} = \frac{\log n}{c} $$
}
\vskip 2em
\item[2.]{
Each thread could store its result into an array indexed by its ID.
Then, when computation is complete, a regular \texttt{for} loop
within an OpenMP parallel region could iterate
$\lceil \log_2 n \rceil$ times.
In the first iteration, threads where $ID\mod 2 = 0$ would perform
the reduction operation on their array value and the array value
at index $ID + 1$ while the rest of the threads are idle.
In the second iteration, threads where $ID\mod 4 = 0$ would perform
the reduction operation on their array value and the array value
at index $ID + 2$ while the rest of the threads are idle.
This process would repeat (doubling the mod value and offset index
each time) until the reduction operation has been
performed to produce the final result value at index 0 of the
array.
The total processing time when the program is run on $p$ processors
will be given by the initialization phase plus the compute phase
divided by $p$ processors.
So, the speedup is given by
$$ s = \frac{T_s}{T_p} = \frac{n + n^3}{n + \frac{n^3}{p}} $$
}
\vskip 2em
\item[3.]{
My OpenMP solution to Floyd's algorithm was implemented by
using a \texttt{\#pragma omp parallel for} on the second \texttt{for}
loop of the algorithm.
Thus, for each $k$ value, the rows are broken up for different
threads to process.
The same thread computes an entire row of the matrix.
Using Amdahl's law, the maximum speedup is $1/f$, where $f$ is the
serial fraction of execution time.
So, the maximum fraction of execution time a program can spend on
serial code if the parallel version must achieve a speedup
factor of 10 is 10\%.
}
The run times nicely grow exponentially as $n$ grows linearly.
On eos24, with $n >= 400$, the speedup was $\approx 3.6$.
As the number of threads increased, the run time decreased
exponentially until $t > 4$, where more threads did not gain
anything since there were only 4 processing cores.
\vskip 1em
\item[4.]{
Using Gustafson's law, the scaled speedup factor is given by
$$ S_G = p + (1 - p) T_s = 8 + (1 - 8) \frac{1}{24} = 7.708 $$
}
\end{enumerate}

17
cs677/hw5/src/Makefile Normal file
View File

@ -0,0 +1,17 @@
TARGETS := gen_adj_matrix
TARGETS += floyd-sequential
TARGETS += floyd-parallel
CXXFLAGS := -fopenmp
#CXXFLAGS += -DPRINT_RESULT
OBJS := $(foreach target,$(TARGETS),$(target).o)
all: $(TARGETS)
$(TARGETS): $(OBJS)
$(CXX) -o $@ $@.o $(CXXFLAGS)
clean:
-rm -f *~ *.o $(TARGETS)

View File

@ -0,0 +1,126 @@
/* Josh Holtrop
* 2008-10-15
* CS 677
* Grand Valley State University
*/
#include <omp.h>
#include <math.h>
#include <stdlib.h>
#include <limits.h>
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <vector>
#include <sys/time.h> /* gettimeofday(), struct timeval */
using namespace std;
void usage(char * progname);
int readFile(char * fileName, vector<int> & v);
void convertToMatrix(const vector<int> & v, int num_verts, int * vals);
void usage(char * progname)
{
cout << "Usage: " << progname << " <adjacency-file>" << endl;
exit(42);
}
int main(int argc, char * argv[])
{
if (argc < 1)
usage(argv[0]);
vector<int> v;
int num_verts = readFile(argv[1], v);
int D[2][num_verts][num_verts];
convertToMatrix(v, num_verts, (int *) &D[0]);
struct timeval before, after;
gettimeofday(&before, NULL); /* Start timing */
/* Run Floyd's Algorithm on D */
for (int k = 1; k <= num_verts; k++)
{
#pragma omp parallel for
for (int i = 0; i < num_verts; i++)
{
for (int j = 0; j < num_verts; j++)
{
int distWithoutK = D[(k-1) & 1][i][j];
int distItoK = D[(k-1) & 1][i][k-1];
int distKtoJ = D[(k-1) & 1][k-1][j];
int distWithK =
(distItoK == INT_MAX || distKtoJ == INT_MAX)
? INT_MAX
: distItoK + distKtoJ;
D[k & 1][i][j] = min(
distWithoutK,
distWithK
);
}
}
}
gettimeofday(&after, NULL); /* Stop timing */
#ifdef PRINT_RESULT
cout << "Result:" << endl;
/* Print out the final matrix */
for (int i = 0; i < num_verts; i++)
{
for (int j = 0; j < num_verts; j++)
{
if (D[num_verts & 1][i][j] == INT_MAX)
printf("-- ");
else
printf("%2d ", D[num_verts & 1][i][j]);
}
printf("\n");
}
#endif
double time_before = before.tv_sec + before.tv_usec / 1000000.0;
double time_after = after.tv_sec + after.tv_usec / 1000000.0;
double diff = time_after - time_before;
cout << "Elapsed time: " << diff << " seconds." << endl;
return 0;
}
int readFile(char * fileName, vector<int> & v)
{
ifstream in(fileName);
if (!in.is_open())
{
cerr << "Error opening " << fileName << endl;
return -1;
}
for (;;)
{
int weight;
in >> weight;
if (in.eof())
break;
v.push_back(weight);
}
return (int) sqrt(v.size());
}
void convertToMatrix(const vector<int> & v, int num_verts, int * vals)
{
int vidx = 0;
int (*V)[num_verts][num_verts] = (int (*)[num_verts][num_verts]) vals;
for (int i = 0; i < num_verts; i++)
{
for (int j = 0; j < num_verts; j++)
{
(*V)[i][j] = v[vidx++];
if ((*V)[i][j] == 0)
(*V)[i][j] = INT_MAX;
}
}
}

View File

@ -0,0 +1,125 @@
/* Josh Holtrop
* 2008-10-15
* CS 677
* Grand Valley State University
*/
#include <omp.h>
#include <math.h>
#include <stdlib.h>
#include <limits.h>
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <vector>
#include <sys/time.h> /* gettimeofday(), struct timeval */
using namespace std;
void usage(char * progname);
int readFile(char * fileName, vector<int> & v);
void convertToMatrix(const vector<int> & v, int num_verts, int * vals);
void usage(char * progname)
{
cout << "Usage: " << progname << " <adjacency-file>" << endl;
exit(42);
}
int main(int argc, char * argv[])
{
if (argc < 1)
usage(argv[0]);
vector<int> v;
int num_verts = readFile(argv[1], v);
int D[2][num_verts][num_verts];
convertToMatrix(v, num_verts, (int *) &D[0]);
struct timeval before, after;
gettimeofday(&before, NULL); /* Start timing */
/* Run Floyd's Algorithm on D */
for (int k = 1; k <= num_verts; k++)
{
for (int i = 0; i < num_verts; i++)
{
for (int j = 0; j < num_verts; j++)
{
int distWithoutK = D[(k-1) & 1][i][j];
int distItoK = D[(k-1) & 1][i][k-1];
int distKtoJ = D[(k-1) & 1][k-1][j];
int distWithK =
(distItoK == INT_MAX || distKtoJ == INT_MAX)
? INT_MAX
: distItoK + distKtoJ;
D[k & 1][i][j] = min(
distWithoutK,
distWithK
);
}
}
}
gettimeofday(&after, NULL); /* Stop timing */
#ifdef PRINT_RESULT
cout << "Result:" << endl;
/* Print out the final matrix */
for (int i = 0; i < num_verts; i++)
{
for (int j = 0; j < num_verts; j++)
{
if (D[num_verts & 1][i][j] == INT_MAX)
printf("-- ");
else
printf("%2d ", D[num_verts & 1][i][j]);
}
printf("\n");
}
#endif
double time_before = before.tv_sec + before.tv_usec / 1000000.0;
double time_after = after.tv_sec + after.tv_usec / 1000000.0;
double diff = time_after - time_before;
cout << "Elapsed time: " << diff << " seconds." << endl;
return 0;
}
int readFile(char * fileName, vector<int> & v)
{
ifstream in(fileName);
if (!in.is_open())
{
cerr << "Error opening " << fileName << endl;
return -1;
}
for (;;)
{
int weight;
in >> weight;
if (in.eof())
break;
v.push_back(weight);
}
return (int) sqrt(v.size());
}
void convertToMatrix(const vector<int> & v, int num_verts, int * vals)
{
int vidx = 0;
int (*V)[num_verts][num_verts] = (int (*)[num_verts][num_verts]) vals;
for (int i = 0; i < num_verts; i++)
{
for (int j = 0; j < num_verts; j++)
{
(*V)[i][j] = v[vidx++];
if ((*V)[i][j] == 0)
(*V)[i][j] = INT_MAX;
}
}
}

View File

@ -0,0 +1,39 @@
// gen_adj_matrix.c
// generates random adjacency matrix of desired size and connectivity
// gw
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
int i, j;
FILE *fp;
int numVertices, avgConnectivity;
// get parameters
if (argc != 3) {
printf ("usage: progName numVertices avgConnectivity\n");
exit(-1);
}
else {
numVertices = atoi(argv[1]);
avgConnectivity = atoi(argv[2]);
}
// open/create output file
if ((fp = fopen ("adjacency.dat", "w")) == NULL) {
printf ("coulnd not create file\n");
exit(-1);
}
// generate random graph/matrix
for (i=0; i < numVertices; i++)
for (j=0; j < numVertices; j++)
if (((rand() % numVertices) < avgConnectivity) && i!=j)
fprintf (fp, "%d ", 1 + (rand() % 20));
else
fprintf (fp, "%d ", 0);
fclose (fp);
return 0;
}

14
cs677/hw5/src/time-for-n.pl Executable file
View File

@ -0,0 +1,14 @@
#!/usr/bin/perl
use strict;
use warnings;
for (my $n = 100; $n <= 1000; $n += 100)
{
print("./gen_adj_matrix $n 6\n");
system('./gen_adj_matrix', $n, 6);
print("./floyd-sequential adjacency.dat\n");
system('./floyd-sequential', 'adjacency.dat');
print("./floyd-parallel adjacency.dat\n");
system('./floyd-parallel', 'adjacency.dat');
}