finished NewtonComputation

git-svn-id: svn://anubis/gvsu@320 45c1a28c-8058-47b2-ae61-ca45b979098e
This commit is contained in:
josh 2008-12-07 21:44:20 +00:00
parent c1b75ab6a0
commit ac83b40fb9
2 changed files with 86 additions and 6 deletions

View File

@ -1,7 +1,66 @@
#include <math.h> /* sqrt() */
#include <complex.h> /* complex, I, creal(), cimag() */
#include "NewtonComputation.h" #include "NewtonComputation.h"
#define LEEWAY 0.001
#define ITERATIONS 32
#define CLOSE_ENOUGH(z, x, y) \
(fabs(creal(z) - (x)) < LEEWAY && fabs(cimag(z) - (y)) < LEEWAY)
/*
* This Computation class generates a design in the complex plane
* which shows which complex points go to which of the six roots
* of the equation z^6-1=0 using Newton's method of finding roots
*/
unsigned int NewtonComputation::compute(double x, double y) unsigned int NewtonComputation::compute(double x, double y)
{ {
return 0x00FF8800; double complex rootGuess = x + I * y;
static double halfRoot3 = sqrt(3) / 2.0;
for (int iter = 0; iter < ITERATIONS; iter++)
{
/* percentage of color to illuminate based on current iteration */
double pIlum = (double) (ITERATIONS - iter) / (double) ITERATIONS;
/*
* These if statements check to see if the complex number (the root guess)
* is within LEEWAY distance of a real root. If so, a unique color is returned
* reflecting which root it is close to and how many iterations it took
* for the root guess to get to that root
*/
if (CLOSE_ENOUGH(rootGuess, 1, 0))
{
return ((unsigned int)(0xFF * pIlum)) << 16;
}
if (CLOSE_ENOUGH(rootGuess, -1, 0))
{
return (((unsigned int)(0xFF * pIlum)) << 16) + (((unsigned int)(0xFF * pIlum)) << 8);
}
if (CLOSE_ENOUGH(rootGuess, 0.5, halfRoot3))
{
return ((unsigned int)(0xFF * pIlum)) << 8;
}
if (CLOSE_ENOUGH(rootGuess, -0.5, halfRoot3))
{
return (unsigned int)(0x88 * pIlum);
}
if (CLOSE_ENOUGH(rootGuess, 0.5, -halfRoot3))
{
return (unsigned int)(0xFF * pIlum);
}
if (CLOSE_ENOUGH(rootGuess, -0.5, -halfRoot3))
{
return (((unsigned int)(0xFF * pIlum)) << 16) + (unsigned int)(0xFF * pIlum);
}
/* This expression evaluates the next complex number to be tested
* for being close to a root. It uses Newton's method for finding
* roots of equations according to the following recursive equation:
* x_n+1 = x_n - y_n / dy_n
* --> x_n+1 = x_n - x_n^6 / 6x_n^5
* More information can be found at:
* http://www.willamette.edu/~sekino/fractal/fractal.htm
*/
rootGuess -= (cpow(rootGuess, 6.0) - 1.0) / (6.0 * cpow(rootGuess, 5.0));
}
} }

View File

@ -11,6 +11,8 @@
#include "NewtonComputation.h" #include "NewtonComputation.h"
using namespace std; using namespace std;
/* a "task" will be processing TASK_SIZE pixels */
#define TASK_SIZE 100
#define PROGNAME "Josh's CS677 Final : MPI Fractal Generator" #define PROGNAME "Josh's CS677 Final : MPI Fractal Generator"
#define getXVirt(x) (((x) - (width >> 1)) * zoom + x_center) #define getXVirt(x) (((x) - (width >> 1)) * zoom + x_center)
#define getYVirt(y) ((-((y) - (height >> 1))) * zoom + y_center) #define getYVirt(y) ((-((y) - (height >> 1))) * zoom + y_center)
@ -18,7 +20,7 @@ using namespace std;
bool createWindow(int width, int height, bool createWindow(int width, int height,
SDL_Surface ** screen, Uint32 ** pixels); SDL_Surface ** screen, Uint32 ** pixels);
void getSizes(int * rank, int * size, int * nprocs); void getSizes(int * rank, int * size, int * nprocs);
void draw(int rank, int size, int nprocs, int width, int height, void draw(int rank, int world_size, int nprocs, int width, int height,
Uint32 * pixels, Computation * computation); Uint32 * pixels, Computation * computation);
static double x_center = 0.0; static double x_center = 0.0;
@ -69,14 +71,19 @@ int main(int argc, char * argv[])
SDL_Event event; SDL_Event event;
bool going = true; bool going = true;
bool window_success = createWindow(width, height, &screen, &pixels); bool window_success = createWindow(width, height, &screen, &pixels);
bool redraw = true;
if (!window_success) if (!window_success)
going = false; going = false;
while (going && SDL_WaitEvent(&event) != 0) while (going && SDL_WaitEvent(&event) != 0)
{ {
draw(my_rank, world_size, nprocs, width, height, if (redraw)
pixels, computation); {
draw(my_rank, world_size, nprocs, width, height,
pixels, computation);
redraw = false;
}
SDL_UpdateRect(screen, 0, 0, 0, 0); SDL_UpdateRect(screen, 0, 0, 0, 0);
switch (event.type) switch (event.type)
{ {
@ -153,10 +160,10 @@ void getSizes(int * rank, int * size, int * nprocs)
} }
} }
void draw(int rank, int size, int nprocs, int width, int height, void draw(int rank, int world_size, int nprocs, int width, int height,
Uint32 * pixels, Computation * computation) Uint32 * pixels, Computation * computation)
{ {
if (size == 1) if (world_size == 1)
{ {
for (int y = 0; y < height; y++) for (int y = 0; y < height; y++)
{ {
@ -170,8 +177,22 @@ void draw(int rank, int size, int nprocs, int width, int height,
} }
else if (rank == 0) else if (rank == 0)
{ {
int num_pixels = width * height;
for (int to_proc = 1; to_proc < world_size; to_proc++)
{
}
} }
else else
{ {
for (;;)
{
/* wait to be told what to do */
#if 0
MPI_Recv();
if () /* exit if we are done */
break;
MPI_Send(); /* report results back */
#endif
}
} }
} }