
Motivations and Measurements in an Agile Case Study
Lucas Layman

North Carolina State University
900 Main Campus Dr., Rm. 197

Raleigh, NC 27695
+1.919.513.5082

lmlayma2@ncsu.edu

Laurie Williams
North Carolina State University
900 Main Campus Dr., Rm. 198

Raleigh, NC 27695
+1.919.513.4151

williams@csc.ncsu.edu

Lynn Cunningham
Clarke College

60 South Algona Street
Dubuque, IA 52001
+1.563.556.4637

lynn.cunningham@clarke.edu

ABSTRACT
With the recent emergence of agile software development
technologies, the software community is awaiting sound,
empirical investigation of the impacts of agile practices in a live
setting. One means of conducting such research is through
industrial case studies. However, there are a number of
influencing factors that contribute to the success of such a case
study. In this paper, we describe a case study performed at Sabre
Airline Solutions evaluating the effects of adopting Extreme
Programming (XP) practices with a team that had
characteristically plan-driven risk factors. We compare the
team’s business-related results (productivity and quality) to two
published sources of industry averages. Our case study found that
the Sabre team yielded above-average post-release quality and
average to above-average productivity. We discuss our
experience in conducting this case study, including specifics of
how data was collected, the rationale behind our process of data
collection, and what obstacles were encountered during the case
study. We also identify four factors that potentially impact the
outcome of industrial case studies: availability of data, tool
support, co-operative personnel and project status. We believe
that recognizing and planning for these factors is essential to
conducting industrial case studies, and that this information will
be helpful to researchers and practitioners alike.

Categories and Subject Descriptors
K.6.3 [Management of Computing and Information Systems]:
Software Management — software process; and D.2.9 [Software
Engineering]: Management — life cycle, programming teams

General Terms
Management, Measurement, Experimentation, Human Factors

Keywords
Agile software development, extreme programming, case studies

1. INTRODUCTION
The introduction of Extreme Programming (XP) [5] into
mainstream software development has been met with both
enthusiasm and skepticism. For decision-makers, an empirical,
quantitative investigation is beneficial for investigating XP’s
efficacy. A survey of 90 software engineering researchers and
practitioners [24] revealed that industry is influenced by
compelling evidence on the effectiveness of a technique in live
situations in an environment such as their own. One method for
conducting research in a live industrial setting is through realistic,
methodologically-defensible case studies. Case studies are
valuable because they involve factors that staged experiments
generally do not exhibit, such as scale, complexity,
unpredictability, and dynamism [18]. However, Zelkowitz and
Wallace [25] reported that less than 10% of papers in the
respected journals they examined involved a case study.

In order for case study results to have meaning, it is necessary to
record contextual information and to implement measures that
satisfy the goals of the study. For instance, in our case studies of
XP practices [16, 21], we record context information about the
team and project under study, we measure the team’s usage of XP
practices, and we measure the business-related results (such as
productivity and quality) of the project. However, data collection
and software process measurement are not simple tasks.
Furthermore, when studying agile processes in particular, it is
desirable that any metrics collection program is lightweight and
unobtrusive to the team’s daily activities. In the course of
conducting our case studies, we have observed several critical
factors that impact data collection. We have found that the ability
to collect even a lightweight set of metrics is heavily influenced
by the presence of historical data, by the co-cooperativeness of
personnel, by the availability of data, and by tool support.

This paper discusses the process of conducting an industrial case
study with an agile team at Sabre Airline Solutions. In order to
facilitate data collection and to guide our agile case studies, we
have created the Extreme Programming Evaluation Framework
(XP-EF) [21]. We discuss our rationale behind the processes for
collecting certain metrics so that we can create a
methodologically defensible case study. We analyze those factors
which both enabled and prevented the collection of the full range
of XP-EF metrics. This information will be useful to those
practitioners who are considering the implementation of a
software metrics program in conjunction with their agile process.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Workshop QUTE-SWAP@ACM/SIGSOFT-FSE12, November 5, 2004,
Newport Beach, CA, USA.
Copyright 2005 ACM 1-59593-001-9/04/0011/5.00

The remaining sections of this paper are organized as follows:
Section 2 describes related work on case study research, the XP-

14

EF, and XP studies in general; Section 3 describes the Sabre
Airline Solutions case study and the team’s adoption of XP
practices; Section 4 provides a discussion of our case study
findings and lessons learned.

2. RELATED WORK
The following sections present background information on case
study research, the XP-EF, and existing empirically-based XP
studies.

2.1 Case Study Research
Case studies can be viewed as “research in the typical” [8, 13].
As opposed to formal experiments, which often have a narrow
focus and an emphasis on controlling context variables, case
studies in software engineering test theories and collect data
through observation of a project in an unmodified setting [25].
However, because the corporate, team, and project characteristics
are unique to each case study, comparisons and generalizations of
case study results are difficult and are subject to questions of
external validity [14]. Nevertheless, case studies are particularly
important for industrial evaluation of software engineering
methods and tools [13]. Researchers become more confident in a
theory when similar findings emerge in different contexts [13].
By performing multiple case studies and/or experiments and
recording the context variables of each case study, researchers can
build up evidence through a family of experiments.

When conducting a case study, or any form of research, it is
important to consider the validity of that research. Yin [23]
describes four components of experimental validity. Construct
validity regards whether the measures and metrics in place are
appropriate for capturing the desired results. Internal validity
concerns changing or influencing factors in the object(s) under
study (in our case, a software project and software team) that may
impact the results. External validity regards whether the results of
one study can be generalized outside the context of that study.
Finally, experimental validity concerns whether the research was
executed in a scientifically-defensible manner with suitable
attention to detail. Replication of case studies addresses threats to
experimental validity [3].

2.2 Extreme Programming Evaluation
Framework
The Extreme Programming Evaluation Framework (XP-EF) is a
benchmark for expressing XP case study information [21]. The
XP-EF is a compilation of validated and proposed metrics
designed for expressing the XP practices an organization has
selected to adopt and/or modify, and the outcome thereof. We
desired for all metrics to be parsimonious and lightweight so that
they could be collected by a small team without a dedicated
metrics specialist. The XP-EF is composed of three parts: XP
Context Factors (XP-cf); XP Adherence Metrics (XP-am); and XP
Outcome Measures (XP-om).

In the XP-EF, researchers and practitioners record essential
context information about their project via the XP Context Factors
(XP-cf). Recording factors such as team size, project size,
criticality, and staff experience can help explain differences in the
results of applying the methodology. The second part of the XP-
EF is the XP Adherence Metrics (XP-am). The XP-am enables

one to express concretely and comparatively via objective and
subjective metrics the extent to which a team utilizes the XP
practices. By examining multiple XP-EF case studies, the XP-am
also allows researchers to investigate the interactions and
dependencies between the XP practices and the extent to which
the practices can be separated or eliminated. Part three of the XP-
EF is the XP Outcome Measures (XP-om), which enables one to
assess and to report how successful or unsuccessful a team is
when using a full or partial set of XP practices.

A more detailed discussion of the XP-EF, its creation, rationale,
and shortcomings may be found in [21]. Instructions and
templates for measuring and reporting XP case study data via XP-
EF Version 1.4 have been documented in [20].

2.3 XP Studies
Practitioners and researchers have reported numerous,
predominantly anecdotal and favorable, studies of the XP
methodology. However, some empirically-based XP case studies
do exist. Abrahamsson [1] conducted a controlled case study of
four software engineers using XP to implement data management
software. Comparison between the first and second releases of
the project yielded increases in planning estimation accuracy and
productivity while the defect rate remained constant. Similarly,
Maurer and Martel [17] reported a case study of a nine-
programmer web application project. The team showed strong
productivity gains after switching from a document-centric
development process to XP.

Reifer reported the results of an industrial survey conducted to
determine if agile methods/XP reduce costs and improve
development time [19]. Results from 14 firms spanning 31
projects were collected. Most projects were characterized as
small pilot studies, for internal use only, and of generally low
risk. Most projects had average or better than average budget
performance and schedule adherence. Projects in the software
and telecommunications industry reported product quality on par
with nominal quality ratings; e-business reported above par
quality ratings; and the aerospace industry reported a below par
quality rating for their agile/XP projects.

A year-long case study was performed with a small team (7-11
team members) at IBM to assess the effects of adopting XP [21].
The case study was structured using the XP-EF. Through two
software releases, this team transitioned to and stabilized its use
of a subset of XP practices. The use of a “safe subset” of the XP
practices was necessitated by corporate culture, project
characteristics, and team makeup. The team improved
productivity, reduced pre-release defect density by 50%, and
achieved a 40% reduction in the post-release defect density when
compared to the same metrics from an earlier release. A similar
case study was performed with another team at Sabre Airline
Solutions [16]. This team (denoted as the Sabre-A team) was
selected as an example of a “characteristically agile” team,
whereas the team in this case study is “characteristically plan-
driven,” as discussed in section 3.2.1. The study compared the
business-related results of a product developed by the Sabre-A
team using traditional methods and the same product further
developed using XP. The study showed a 65% reduction in the
product’s pre-release defect rates, a 35% reduction in the post-
release defect rates, and a 50% improvement in productivity (as
measured by code output) in the XP release.

15

3. SABRE-P CASE STUDY
In this section, we describe the details of applying the XP-EF
framework to our case study at Sabre Airline Solutions. We
provide discussion of the important components and influencing
factors of our study, and discuss the method behind recording
various measures.

In this study, we examine the 13th release of the Sabre team’s
product. To differentiate between the Sabre team in this study,
and those in other case studies, we refer to this team as Sabre-P
(plan-driven). At the time of this release, the team had been using
XP for approximately 20 months. The release began in the
second quarter of 2003 and lasted 5 months. Data collection for
this case study was largely dependent on historical data.
Integration and build tools allowed the researchers to gather code
samples, and a web-based defect-tracking system provided a
means for gathering quality information. Similarly, the team’s
project planning and tracking tool (an augmented Microsoft®
Excel spreadsheet) was used for productivity and schedule
analysis. The Shodan Adherence Survey (described in Section
3.3) was used to gather subjective information of XP practice
usage from team members during the new release. An e-mail
questionnaire was sent to developers approximately eight months
after the completion of the release under study in order to solicit
qualitative information about their use of XP practices and any
obstacles in adopting these practices.

We now describe this case study in terms of the XP-EF and its
sub-categories. In the case of all data and metrics collected, we
discuss our methods of collection and the rationale behind those
methods, and we highlight difficulties thus encountered. In each
of the data tables below, we include a column to indicate how the
data was collected based on the following key:

Table 1: Data Source Key

Source Key
Defect tracking DT
Development leader DL
Developer questionnaire DQ
Observation OB
Project tracking PT
Source code SC
Survey SU
Test suite / test tools TS

3.1 Team and Project Selection
Our case study was performed with a Sabre Airline Solutions
development team (the Sabre-P team) in the United States. This
study was done as a part of a cooperative effort between
researchers at North Carolina State University and several
development teams at Sabre Airline Solutions. Before conducting
any case study, it is important to select a sample that is
representative of the company or organization as a whole in order
to reduce threats to external validity. Kitchenham notes that
project selection is not always a decision that can be made by the
researcher, since a participating company may only commit one
or two teams/projects to the research [13]. One can select based
on project age, programming language, development
methodology, risk factors, etc.

The team reported in this paper was selected to participate in the
study because they were classified as “characteristically plan-
driven” based upon the five developmental risk factors suggested
by Boehm and Turner [6] for evaluating a team’s agile or plan-
driven characteristics. These risk factors include requirements
dynamism, team size, personnel skill, criticality, and team culture.
We were also able to select other teams for separate case studies
based on varying risk factors. By selecting multiple teams with
differing risk factors, we hoped to acquire samples that were
representative of teams within the development organization. A
more thorough discussion of the Sabre-P team’s risk factors may
be found in Section 3.2.1. Team selection for our research project
was also influenced by data availability, team size, and the
cooperativeness of the team with the researchers.

3.2 Context Factors
Drawing conclusions from empirical studies in software
engineering is difficult because the results of any process largely
depend upon the project setting. One cannot assume a priori that
a study’s results generalize beyond the specific environment in
which it was conducted [3]. Therefore, recording an experiment’s
context factors is essential for fully understanding the generality
and the utility of the findings. Context is also beneficial for
understanding the similarities and the differences between the
case study and one’s own environment. The XP-Context Factors
utilize developmental factors, based upon work by Boehm and
Turner [6], and the seven categories of context factors outlined by
Jones [9]: software classification, ergonomic, sociological,
project-specific, technological, geographical.

3.2.1 Developmental factors
The Sabre-P development team’s Boehm-Turner [6] risk factors
for the release under study are graphed on a polar chart’s five
axes, shown in Figure 1. Because most of the data points are
toward the periphery of the graph, the Sabre-P team’s shape
indicates that a hybrid “partially plan-driven, partially agile
method” is appropriate. The developmental factors that appear to
necessitate plan-driven practices are personnel, dynamism and
culture.

Figure 1: Sabre-P Developmental Factors

16

Some proponents of XP claim that it can work in almost any
setting, while others warn that XP may not be suitable for large
teams or in a safety-critical environment [6]. Recording a team’s
developmental factors can aid in investigating these claims.

3.2.2 Sociological
The team’s sociological factors are summarized in Table 2. The
Sabre-P team was comprised of 15 developers, one dedicated
tester, and several specialist personnel (such as DBAs, UI layout
designer, etc.). The team members had varied amounts of
experience and education. Personnel turnover during the release
under study was low (5%) and consisted of one person leaving the
team prior to development began on this release.

When documenting personnel characteristics, it is important to
distinguish whether one is counting only software developers, or
whether one is including project managers or testers in the
measurement. In this study, we count only software developers,
but include a dedicated tester in the counts for team size. This
tester was present in the software lab and contributed to
development on a regular basis. Collecting the personnel
turnover rate involved a consultation with the team leader, who
identified those team members who left prior to and during each
release. The accuracy of such information may be in question
when dealing with a non-recent release. However, calculating
turnover would be trivial if an XP tracker or someone in a similar
role recorded the number of developers present during each
iteration/release. Assessing factors such as domain expertise and
language expertise also involved inquiry of the development lead.
It may be possible to evaluate these factors in a more objective
manner through a standardized examination, but this was beyond
the scope of our study.

Table 2: Sociological Factors

Context Factor Value Source
Team Size (developers) 15+1 tester PT
Team Education Level Bachelors: 8 + 1 tester

Masters: 6
PhD: 1

DL

Experience Level of
Team

1-5 yrs: 6 + 1 tester
6-10 yrs: 5
11-15 yrs: 3
16+ years: 1

DL

Domain Expertise Medium DL
Language Expertise High DL
Experience of Proj. Mgr. High DL
Specialist(s) Available Dedicated tester,

dedicated DBA,
configuration manager,
web-services specialist

DL

Personnel Turnover 5% PT
Morale Factors None DL

3.2.3 Project-specific factors
As shown in Table 3, the Sabre-P team’s product is a large web
application combined with a back-end batch component that
together total over 1 million lines of executable code (>1,000
KLOEC). Development during the release under study lasted
approximately five months and involved enhancements to the web
application component of the system (487 KLOEC); with the total

number of new and changed classes amounting to 202 KLOEC
and new and changed lines of code totaling 26.4 KLOEC. The
new and changed lines, methods and classes are with respect to
the release developed immediately prior (12th version) to the
release under study (13th version). Also, there was a two-month
feature freeze before the release point during which the entire
team engaged in end-to-end testing of the system.

The person-month metric is a traditional measure of effort that
can be calculated by knowing number of personnel present during
the course of a project as well as the elapsed time of development.
Basic XP project tracking advocated by Beck [4] provides
sufficient information to perform this calculation. Other effort
metrics that we gathered involve the amount of change to the code
base that occurs during release development. Tools exist that can
compare two file systems and determine those files with new,
changed, and deleted lines. One can thereby isolate those files
with changes in them; in the case of object-oriented languages,
this technique could possibly be used to identify new and changed
classes. However, many tools are not context-aware and cannot
separate significant changes (changes in executable lines) with
insignificant changes (changes that do not impact functionality).
Also, to our knowledge, no tool exists to count the number of new
and changed methods in a project. In this case study, we used the
Beyond Compare1 tool to identity new and changed classes and to
count the new, changed, and deleted lines of code. From these
classes, new and changed methods were manually counted; a
time-consuming task that may be prone to human error.

Table 3: Project-specific Factors

Context Factor Value Source
New & Changed User Stories 46 PT
Domain Web application DL
Person Months 23.1 PT
Elapsed Months 5 PT
Nature of Project Enhancement DL
Relative Complexity Moderate DL
Project Age 10 years DL
Constraints Fixed-delivery

date, utilize CM
and quality-
management
processes

DL

New/Changed Classes
Total Component Classes

1,200
2,721

SC

New/Changed Methods
Total Component Methods

2,471
30,088

SC

New/Changed KLOEC 26.4 SC
KLOEC of New & Changed
Classes

234.5 SC

Component KLOEC 487.4 SC
System KLOEC 1,014.8 SC

3.2.4 Technological factors
The Sabre-P team’s development methodology throughout the
release was XP. Release versions were dictated by the marketing
department and served as development milestones. The team

1 http://www.scootersoftware.com/

17

almost exclusively did their planning activities on the iteration
level, and the product was continuously available to customers via
an automated build machine. User stories and task estimates were
recorded in a Microsoft® Excel spreadsheet that was also used to
forecast release points and iterations based on the team’s project
velocity. The web-application component was developed using
Java, and the team employed the JUnit automated unit testing
framework

2

. The team also began preliminary evaluation of the
FIT3 acceptance testing framework during the release, though it
was not used extensively. The team’s technological factors are
shown in Table 4.

Table 4: Technological Factors

Context Factor Value Source
Soft. Dev. Meth. XP DL/OB
Project Mgmt. XP Planning game DL/OB
Defect Prevention
& Removal

Unit testing, dedicated tester,
customer acceptance tests

DL/OB

External/System
Test

Involvement throughout code
development, daily interaction

DL/OB

Language Java, C++ DL
Reusable
Materials

Third party libraries, JUnit
test suites, FIT tests, code
template skeletons

DL

3.2.5 Ergonomic factors
The Sabre-P team’s ergonomic factors are documented in Table 5.
A representative from Sabre’s product marketing department
served as the XP customer on this project, was on-site 25%-50%
of the time, and was available through e-mail at other times.
When the marketing representative was not available, the team’s
XP tracker served as the proxy customer and was trusted by the
marketing representative and product management to serve as an
appropriate replacement. The team worked in two adjacent, open-
space XP labs. Team members stated that, due to the number of
people in open space, the work area could sometimes become a
distraction. Again, information for these factors was solicited
from the project lead and from developer questionnaire responses.

Table 5: Ergonomic Factors

Context Factor Value Source
Physical Layout Two adjacent, open labs DL/OB
Distraction of
Office Space

Medium DL/DQ

Customer
Communication

Pseudo-customer. Primarily
face-to-face and e-mail
communication.

DL/DQ

3.2.6 Geographical factors
The entire development team was co-located, as indicated in
Table 6. The team’s product was used by three external
customers. These customers were all remote: one domestic, two
international. One of the international customers is based
overseas.

2 http://junit.org
3 http://fit.c2.com/

Table 6: Geographical Factors

Context Factor Value Source
Team location Co-located DL/OB
Customer Cardinality and
Location

3 (remote; multi-
national; several
time zones away)

DL

Supplier Cardinality None DL

3.3 Adherence Metrics
Most companies that use XP adopt the practices selectively and
develop customized approaches that are appropriate within their
particular organizational setting [7]. The XP adherence metrics
enable case study comparison, the study of XP practice
interaction, and the determination of contextually-based, safe XP
practice subsets. Most of the adherence metrics are in-process
metrics that must be planned for and documented during
development. These metrics also introduce potential overhead in
the measurement process. For example, there is currently no fully
automated means of tracking the frequency of pair programming
or how often unit test suites are run by individual members.
Therefore, some of this information requires either a subjective
estimate or manual data tracking by some or all of the team
members. Where feasible, the XP-am contain objective, and often
automated, measures that capture adherence information with
minimal development overhead. Unfortunately, many of the
objective metrics in the XP-am could not be gathered for this case
study since most of the information in this study is collected from
historical data.

The XP-am also contain subjective information in the form of the
Shodan Adherence Survey (described fully in [20] and adapted
from [15]). The survey is an in-process means of gathering XP
adherence information from team members, and asks the question
“How often do you perform each XP practice?” The survey is
web-based and was taken by each developer during the time of
the release under study. Also, a questionnaire was administered
to the Sabre-P team approximately eight months after the
completion of the release under study. The team was asked to
discuss the various XP practices and why they felt that the team
had difficulty adopting certain practices (based on survey
responses). Team members were also asked which practices they
felt were essential and which practices they felt were unnecessary.
An additional question also asked if the team members believed
that XP worked for a team of their size and to justify their
answers. A summary of the Sabre-P team’s survey responses are
provided for context. We discuss the Sabre-P team’s XP-am
results under three categories: planning, testing, and coding.

3.3.1 Planning practice adherence
The entire team participated in daily stand-up meetings.
Developers noted that this exercise could become tedious with
their team size, since some points brought up by developers
seemed irrelevant to others on the team who had little to do with
other people’s components. However, team leads, project
managers, trackers, and some developers found the meeting
extremely beneficial for evaluating the status of the project.
Developers also believed that customer access was a problem, and
that their representative was not available as often as needed to
make decisions. As such, team members felt that development
would sometimes become hurried or ill-planned because

18

important features needed to be incorporated or re-worked late in
the release cycle at times when the customer was able to give
input. Furthermore, developers noted that the planning game was
often influenced by factors outside the team’s control, such as
deadlines set by upper management and feature creep. Business
demands sometimes required the team to incorporate more
features than were planned into an iteration or a release but
without the feature tradeoff that XP mandates. Thus, planning
became difficult and sometimes frustrating for the team. Releases
ranged from three to five months in length, and iteration lengths
were fixed at ten days. Many developers noted the value of small
iteration plans because they provided a concise, focused set of
tasks that must be completed in the coming weeks.

Gathering the release and iteration length metrics was a matter of
examining the team’s project tracking tool. Requirements
dynamism serves as our measure of requirements volatility. If the
team is agile, then it should be able to withstand a high amount of
requirements change. However, collecting this information
potentially introduces overhead into the XP process. In the Sabre
team’s project tracking tool, no mechanism existed for recording
which user stories were injected, removed, or changed. Deleted
stories disappeared from iteration plans, but the reason for their
removal (be it by customer request or because of feature
completion) was not recorded. Similarly, it was unclear whether
stories that were added to iteration plans were a part of the larger
release plan, or whether an impromptu customer request was
made to insert the story directly into the iteration. Collecting
meaningful information for this metric was also difficult given
that the team operated almost exclusively on iteration plans.
Since the user story changes were not recorded at the release plan
level, it is difficult to quantify the actual amount of requirement
change that took place over the release period.

The team’s planning adherence is summarized in Table 7. The
objective metrics appear on the top and the Shodan; subjective
metrics appear on the bottom. This format will be used for Tables
7, 8, and 9.

Table 7: Planning adherence metrics
XP-am Planning Metric Value Source
Release Length 3 months PT
Iteration Length 10 work days PT
Requirements dynamism N/A N/A
Subjective Metrics (Shodan) Mean (σ2)
Stand-up meetings 98.0% (4.1) SU/DQ
Short Releases 75.5% (22.6) SU/DQ
Customer Access / On-site Cust. 70.0% (23.6) SU/DQ
Planning Game 66.5% (17.3) SU/DQ

3.3.2 Testing practice adherence
Table 8 summarizes the Sabre-P team’s testing adherence metrics.
The team’s test coverage information was gathered using the
Clover4 tool that ran as a part of the automated build process. The
large amount of legacy code was the most influential inhibitor to
the team adopting the XP testing practices. The actual coverage
provided by the unit tests is small (7.7% statement coverage).

4 http://www.cenqua.com/clover/

Test coverage is averaged over the entire component, not just the
new and changed portions. Therefore, the coverage percentage is
relatively low due to the large amount of legacy code in place
before unit testing was instated as a development practice within
the team. A considerable amount of effort would be required to
unit test all of this code.

More revealing information regarding the team’s testing effort can
be inferred by examining the number of test classes that
correspond to new and changed classes, as well as the ratio of test
KLOEC to source KLOEC. This information was gathered using
the Beyond Compare tool to identify the new and changed classes
in the system, and then searching for a corresponding test class in
the source tree. Since identifying new and changes classes could
not be counted by the Clover tool, identifying corresponding test
classes that corresponded with new and changed classes was a
manual process. This counting could potentially involve
significant overhead in a large system with a high amount of code
churn. These remaining testing adherence measurements also
turned out to be low, indicating that the team does not write unit
tests often. Further consultation with the team lead revealed that
the team’s unit testing strategy centered on writing tests for the
classes containing the business logic of the component, which in
turn exercised many supporting classes.

Further insights about the team’s difficulties in adopting unit
testing were offered by the developer questionnaire responses.
Writing unit tests for some of the legacy code was not perceived
to be cost-effective by some individual developers. Furthermore,
developers noted that, because there are many complex elements
to their system, it is often difficult to write unit tests for all pieces
of code. Some developers also cited limitations in existing unit
testing frameworks (such as limited capabilities to test GUI
applications) as a major hurdle in adopting unit testing and test-
driven development. Also, developers often abandoned writing
tests when under deadline pressure, striving to implement all the
features promised in the release. This was done in spite of
encouragement from the team leads and the XP coaches, who
urged the team members to write unit tests for all new or changed
pieces of code.

The team has just begun learning to automate their acceptance
testing via the FIT framework. However, most of the acceptance
tests were not automated. Developers stated that they frequently
use acceptance tests, but that these tests are often not very
detailed or extensive before work began on an associated user
story or feature. The practice of writing an acceptance test to
guide development was not strictly enforced at the time. Many
developers found value in the tests as a mark of completion for a
user story, but that acceptance tests that were better defined early
in the process could help drive development more effectively.

19

Table 8: Testing adherence metrics
XP-am Testing Metric Value Source
Test Coverage (statement) 7.7% TS
Test Run Frequency
(quickset5 runs / person-day)
[anecdotal]

0.4 DL

Test Classes to New/Changed
classes (JUnit only)

2.25% TS

New Classes with corresponding
Test Classes (JUnit only)

5.66% TS

Test LOC / Source LOC
(including test code embedded
in the system)

0.061 TS

Subjective Metrics (Shodan) Mean (σ2)
Test First Design 60.0% (21.0) SU/DQ
Automated Unit Tests 74.0% (23.0) SU/DQ
Customer Acceptance Tests 64.0% (26.6) SU/DQ

3.3.3 Coding practice adherence
The Sabre-P’s coding adherence metrics can be found in Table 9.
The coding adherence metrics have been the most difficult to
automate. An automated means of collecting these metrics is
currently unavailable, though one suggested method involves
examining comment banners to identify changes done by pair
programmers rather than by solo programmers [22]. Manually
tracking the amount of time spent pairing when working on a user
story would be elementary, but would be tedious in that
developers would have to record information every time that they
worked on a specific item. Perhaps sampling the developers’ time
spent pairing and doing inspections at various phases of
development is a plausible alternative.

Beck hypothesizes that continuous integration may be
problematic on a large team since the integration software will
have to handle multiple code streams simultaneously [5].
However, the Shodan survey response for the question on
continuous integration averaged 89.5% (std. dev. of 7.6),
indicating that, on average, the team members checked their code
into the integration machine more than once per day. The
practice was considered essential by some developers as it forced
them to design simply and to code in smaller increments. Many
developers also noted that the constant integration provided
feedback (in the form of automatically-run unit test suites) helped
identify errors quickly.

The survey responses also indicated that the team paired
approximately 60% of the time. Questionnaire respondents noted
that the team used “intelligent pairing,” wherein they only paired
on those problems perceived to be suitably complex. However,
many questionnaire respondents stated that pairing was often
discarded due to impending deadlines. Developers felt that they
must work solo in order to meet these deadlines, despite strong
encouragement from the coach and the team leads to continue to
pair program. Developers noted that refactoring is sometimes a

5 Quickset refers to a subset of the entire unit test suite that is run
to excerise a particular module of the system

neglected practice due a fear of injecting defects into existing
production code. They state that a more robust suite of unit tests
would help alleviate this fear, but, because of the large amount of
legacy code, refactoring this code to be enable unit testing is not a
viable option. When asked if they followed the rules of simple
design, most developers stated that the practice is often followed.
However, when faced with a complex problem, a simple design
approach is not sufficient and more detailed planning and design
is required.

When asked to comment on collective code ownership within the
team, developers stated that it provided some benefit in
distributing knowledge of the system. However, because the
system is large and complex with different modules, there are still
some team members who retain specialized knowledge and are
the only ones qualified to work on certain tasks. One drawback
several developers mentioned about collective ownership is that it
has lead to a decreased amount of responsibility for poorly-
written code. For instance, a developer might choose to
implement the quickest solution, but not one with a sound design
or an optimal structure since he/she is not the only person
responsible for the performance and the effects of that code.
Without this responsibility, there is less motivation to write code
that conforms to standards and/or is well-designed. When asked
if they felt that they were working at a sustainable pace, the
developers all agreed that they were not. Since the team operated
with fixed and aggressive deadlines without the ability to reduce
scope, the team worked consistent overtime to meet promised
features and delivery dates. Underestimation of the time it took to
complete user stories also contributed to the problem.

Table 9: Coding adherence metrics
Coding Metric Value Source
Pairing Frequency
(anecdotal)

70% DL

Inspection Frequency
(anecdotal)

0% DL

Subjective Metrics (Shodan) Mean (σ2)
Pair Programming 61.5% (22.3) SU/DQ
Refactoring 59.5% (20.4) SU/DQ
Simple Design 69.0% (21.0) SU/DQ
Collective Ownership 70.0% (21.0) SU/DQ
Continuous Integration 89.5% (7.6) SU/DQ
Coding Standards 80.5% (14.7) SU/DQ
Sustainable Pace 61.0% (25.9) SU/DQ
Metaphor 55.0% (25.7) SU/DQ

3.4 Outcome Measures
Of utmost importance to decision makers is whether or not
adopting XP aids in productively creating a higher quality
product. Because adequate baseline data was not available for the
Sabre-P team, their business-related results, structured via the XP-
Outcome Measures (XP-om), are compared to industry averages
documented by Capers Jones in [9] and the Bangalore SPIN group
[2]. We selected these two sources because of their accessibility
(the Bangalore SPIN report is available online and the Jones
reference is available in many bookstores). Furthermore, these
sources contained similar software process measures as those in
the XP-om. The measures in these two sources were also

20

documented clearly enough that data collection could be
conducted in similar manner to that of the industry averages.

In our other case studies, we compared these results to results
from a previous release of the same product. One can reduce
internal validity concerns by studying the same software project
with a team comprised largely of the same personnel. However,
for this case study, no such comparison point could be established
since the necessary artifacts for earlier releases (project tracking,
defect information, etc.) could not be obtained.

In order to provide an informative comparison, we used published
industry averages from two sources [2, 9]. When comparing with
industry survey data, it is critical to ensure that the metrics are
identical and that they were collected using the same methods.
For example, when gathering defects, the same collection period
must be established. This period can be either a set time period
(e.g. six months after release) or a set of specific phases of
development (post-release, system test, integration test). When
interpreting the results, it is important to remember that the
published data covers a broad range of projects and organizations.
Therefore, it can be unclear how your own case study relates to
the sample population from the industry averages. If the
published information is organized into specific categories (e.g.
team size, project duration, criticality, domain, etc.), then one
may be able to draw more meaningful conclusions. When such
data is unavailable, one must be cautious when interpreting the
results since the specific context of one’s study may be vastly
different from those projects in the industry surveys.

3.4.1 Limitations
The case study results are presented relative to industry averages
of the Bangalore SPIN Benchmarking group [2] (Table 10) and of
Jones [9] (Table 11). The results in Table 10 are presented with
regard to the 95% confidence bounds published in the report:
Higher (greater than upper limit), Lower (less than the lower
limit), or Similar (within the confidence interval). Results in
Table 11 are presented in the same fashion, except that no
confidence bound was given and only a point estimate is
available. Interpreting the Jones surveys required converting the
system size from KLOEC to function points. Function points
were estimated from lines of code using the 1996 version of the
Programming Languages Table6. This estimation technique,
known as “backfiring,” has been shown to have an accuracy of ±
20% [11]. The lines of New and Changed Code served as the
basis for all computations in the table below. In our calculations
for Table 11, we tested both the upper bound and lower bound of
the function point estimate. Items with a results of “Higher” were
higher than the upper bound and items marked “Lower” were
lower than the lower bound of the given the ± 20% accuracy of
function point estimation. Due to the inaccuracies in our function
point estimation and the use of point estimates for comparison, we
acknowledge that there are experimental validity concerns.

Another experimental validity concern involves the accuracy of
our defect counts. It has been our experience that most teams
have their own methods for recording defect information, even in
a standardized or automated setting. Interpreting and codifying
this information correctly is important to ensuring the validity of

6 http://www.spr.com/products/programming.htm

the data. Counting the defects in the Sabre-P project was a non-
trivial process and required extensive input from both the team’s
tester and the project lead. When counting defects, there were
several entries that were not classified as defects, but instead as
enhancements, customizations, etc. We counted only those
entries where the resolution type was a ”Defect Correction.”
Furthermore, (as is consistent with both survey comparison
points), we did not count defects uncovered during development
or unit test. We also only counted defects which could be
positively identified as attributable to the release under study (all
entries in the Sabre-P team’s defect tracking system had a
“release” category). Some defects that were entered into the
system during the defect collection timeframe (from the
beginning of development through six months after release point)
had an entry of ALL in the “release” category of the entries.
Those entries that were attributable to the release under study
were added to the defect counts and were identified by the
development lead after examining the body of the defect
information.

Our final limitation involves external validity. The intention of
this study was to compare the outcome measures of a team using
XP with industry averages of software teams using many different
development methodologies. Since we do not know the specific
contexts of the industrial teams our industry average resources, it
is unclear whether the Sabre-P team is comparable to those teams
in terms of their contexts. Therefore, we cannot concretely
identify whether the relationship between Sabre-P team’s project
outcome and the industry averages is due to their adoption of XP,
or if there are other elements of Sabre-P team’s context factors
that may have influenced the results.

Table 10: XP outcome measures (compared to [2])
XP Outcome Measures Result Source
Pre-release defect density
(test defect/KLOEC)

Similar DT/SC

Total defect density
(pre-release + post-release defects /
KLOEC)

Lower DT/SC

Productivity (LOEC/Staff Day) Similar SC/PT

Table 11: XP outcome measures (compared to [9])

XP Outcome Measures Result Source
Post-release defect density
(released defects / KLOEC)

Lower DT/SC

Total defect density
(pre-release + post-release defects /
Function Points)

Lower DT/SC

Defect removal efficiency
(test defects / total defects)

Lower DT

Productivity (FP/Staff Month) Higher SC/PT

3.4.2 Pre-release Quality
Both pre-release defect density (test defects/KLOEC) and defect
removal efficiency are indicators of pre-release quality.
Kitchenham notes that pre-release quality is a surrogate measure
of quality [12], and that it is in truth a measure of the testing
process. The Sabre-P team showed similar pre-release defect
density and a lower defect removal efficiency than published

21

averages. These results are subject to interpretation because the
release underwent a two month feature freeze in which end-to-end
testing of the product was performed. This concentrated testing
effort may have led to more defects being uncovered than in a
release where no extended testing period took place. The entire
team participated in the testing process. Conversations with the
team’s tester revealed that, in many cases, defects found during
this test phase were not always recorded in the defect tracking
system: the defects were uncovered and dealt with immediately.
As such, the count of pre-release defects may be an undercount of
the actual number.

3.4.3 Post-release Quality
The team’s post-release quality includes the number of defects
delivered to and reported by the customer. We use a defect
collection period of six months after the release point, a time box
suggested by Kitchenham [12] and others [10], to allow the
customer time to exercise and test the product. The Sabre-P team
achieved lower than the average delivered defect density.
Furthermore, the team’s total defect density (including both pre-
release and post-release defects) was lower than both sets of
survey results. Again, these numbers may be influenced by the
team’s extended testing effort prior to the release of the product.

These results would be better understood if we had evidence
regarding the customer’s use of the system after the release.
According to the development lead, the release under study was
not received by all of the team’s existing customers, and that new
customers for the product activated only a subset of the features in
this release. Therefore, since the system was not fully exercised
by all available customers, the count of post-release defects may
be lower than the team’s usual numbers.

3.4.4 Productivity
Effort was calculated in both LOEC/Staff Day and Function
Points/Staff Month. As previously mentioned, the New and
Changed LOEC (Table 3) provided the basis for the sizing
estimates; this is consistent with the method used in both surveys.
The Sabre-P team’s productivity was similar to the averages
published by the SPIN group and better than average when
compared to projects of similar size in the Jones publication.
Again the team did not spend the entirety of the release updating
and/or creating new features because of the two month feature
freeze. This was taken into account both productivity
measurements, where only those staff days the team spent
working on development code (and not performing the end-to-end
testing) were counted. Furthermore, the productivity counts do
not account for the unit test code written during development.

4. DISCUSSION
This paper has provided one example of an agile case study. We
discussed the difficulties involved in collecting information,
provided some guidance for collecting various metrics, and
showed an example of how comparisons can be made with
published industry average data. The results of our case study
may not be conclusive, but this paper illustrates several important
considerations for performing a case study.

4.1.1 Availability of Data
The measurements we gathered were largely dependent on the
availability of data. Our original intent for this study was to
compare this release of the product to a release completed using a
plan-driven methodology. However, because of difficulties in
obtaining source code and because of changing defect
repositories, none of our outcome measures were available for the
desired plan-driven baseline. When establishing the goals of a
study, it is important to identify what measurements will be
necessary to enable those goals and if the required data is
available.

4.1.2 Tool Support
Strong tool support allowed us to collect our data for analysis
quickly and easily. In the case of the defect tracking system, the
tools also allowed us to perform our analysis more quickly by
providing simple sorting features, hyperlinks to extended
descriptions, and the like. Manually collecting and sorting
through this information would have required extended
involvement of the development team. The last point is
particularly important since we did not wish to pose excessive
burden on the developers that might impact their agile process.
However, even with tool support, the analysis portion of the study
still required considerable effort on the part of the researchers.

4.1.3 Co-operative Personnel
Since many agile teams do not have a dedicated metrics specialist,
having a team with personnel who are willing to cooperate in data
collection and interpretation is essential. In our study, the team
leader was the source for most of the context information, and
both the team lead and the tester were essential to interpreting the
defect information. Furthermore, the cooperation of the
developers was necessary in taking the survey and in responding
to questionnaires provided important qualitative information
needed to help understand and interpret the quantitative findings
of the case study. The qualitative information from the
developers is also valuable for other practitioners reading this
case study, as it allows them to see some of the obstacles and
benefits of adopting XP practices that may not be explicitly
captured by the measurements of the XP-EF framework.

4.1.4 Project Status
Project status is related to data availability. In the XP-EF, we
employ several in-process metrics to determine XP practice
adherence. Since the project had already begun at the time of the
study, we could not gather all of these metrics since the data
would have been incomplete. Project status is a factor in the case
study that is dependent upon the nature of the data being
collected. Furthermore, if the case study project has occurred
several years or even several months ago, data artifacts and
personnel associated with project may not be available to
contribute valuable quantitative and qualitative information.

4.1.5 Conclusion and Future Work
Throughout this paper, we have discussed our experience of
performing a case study to evaluate the effectiveness of XP
practices with an industrial team at Sabre Airline Solutions. We
employed the XP-EF in our study as a means for structuring our
metrics collection, and describe various dependencies and

22

difficulties in collecting the data throughout. We present the
Sabre-P team’s business related results as related to two published
industry averages. These results indicated that the team had
better post-release quality than average and similar or better
productivity than average. These results are discussed within the
specific context of the case study.

We have also identified four important factors that impacted the
progress of the study: availability of data, tool support, co-
operative personnel and project status. The results collected from
this case study were derived largely from historical data, such as
archived code and documented defect information. This
presented a number of unique challenges in collecting
meaningful, informative data post hoc. There is a reliance on
software process artifacts, such as archived code, user story
information, and defect reports, to enable collection of historical
data. The production of these artifacts may run contrary to the
agile paradigm. However, the presence of CASE tools, including
automated build tools, integration environments, and defect
tracking systems, may alleviate much of the overhead associated
with collecting these metrics. This information will be useful to
those practitioners who are considering the implementation of a
software metrics program in conjunction with their agile process.

We are currently analyzing one other case study conducted at
Sabre Airline Solutions. Three additional case studies structured
by the XP-EF are about to commence with a telecommunications
firm in the United States. The results of this family of case
studies and that of other researchers will build an empirical body
of results concerning XP in various contexts in various
organizations.

5. ACKNOWLEDGEMENTS
The authors wish to thank the individuals on the Sabre Airline
Solutions development team for participating in this study, and
Chris Shepperd, Brian Sullivan, Mahvash Hatamieh and Scott
Frederick for their invaluable assistance. This research was
supported by Sabre Airline Solutions. Lynn Cunningham
participated in this research through support from the National
Science Foundation Distributed Mentor Project.

6. REFERENCES
[1] Abrahamsson, P., "Extreme Programming: First Results from

a Controlled Case Study," 29th IEEE EUROMICRO
Conference, Belek, Turkey, September 1-6, 2003, pp.
259-266.

[2] Bangalore Benchmarking Special Interest Group,
Benchmarking of Software Engineering Practices at
High Maturity Organizations. 2001, Bangalore
Software Process Improvement Network.

[3] Basili, V., F. Shull, and F. Lanubile, "Building Knowledge
Through Families of Experiments," IEEE Transactions
on Software Engineering, vol. 25, No. 4, pp. 456 - 473.

[4] Beck, K. and M. Fowler, Planning Extreme Programming,
Boston, MA: Addison-Wesley, 2001.

[5] Beck, Kent, Extreme Programming Explained: Embrace
Change, New York: Addison-Wesley, 2000.

[6] Boehm, B. and R. Turner, Balancing Agility and Discipline:
A Guide for the Perplexed, Addison Wesley, 2003.

[7] El Emam, Khaled, Finding Success in Small Software
Projects, in Agile Project Management.

[8] Fenton, N.E. and S.L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach, Brooks/Cole Pub
Co., 1998.

[9] Jones, C., Software Assessments, Benchmarks, and Best
Practices, Boston, MA: Addison Wesley, 2000.

[10] Kan, S., Metrics and Models in Software Quality
Engineering, Second ed, Boston, MA: Addison Wesley,
2003.

[11] Kemerer, C.F., "Reliability of Function Point Measurement:
A Field Experiment," Communications of the ACM,
vol. 36, No. 2, pp. 85-97.

[12] Kitchenham, B., Software Metrics: Measurement for
Software Process Improvement, Cambridge, MA:
Blackwell, 1996.

[13] Kitchenham, B., L. Pickard, and S. L. Pfleeger, "Case
Studies for Method and Tool Evaluation," IEEE
Software, vol. 12, No. 4, pp. 52-62, July.

[14] Kitchenham, B.A., S. L. Pfleeger, L. M. Pickard, P. W.
Jones, D. C. Hoaglin, K. El Emam, and J. Rosenberg,
"Preliminary Guidelines for Empirical Research in
Software Engineering," IEEE Transactions on Software
Engineering, vol. 28, No. 8, pp. 721-733, 2002.

[15] Krebs, W., Turning the Knobs: A Coaching Pattern for XP
Through Agile Metrics, in Extreme Programming/Agile
Universe, L. Williams, Editor. 2002, Springer: Chicago,
IL.

[16] Layman, L., L. Williams, and L. Cunningham, "Exploring
Extreme Programming in Context: An Industrial Case
Study," 2nd IEEE Agile Development Conference, Salt
Lake City, UT, June 22-26, 2004, pp. 32-41.

[17] Maurer, F. and S. Martel, "Extreme Programming: Rapid
Development for Web-Based Applications," IEEE
Internet Computing, vol. 6, No. 1, pp. 86-90, January-
February 2002.

[18] Potts, C., "Software Engineering Research Revisited," IEEE
Software, vol. No. pp. 19-28.

[19] Reifer, D.J., "How to Get the Most out of Extreme
Programming/Agile Methods," 2nd XP and 1st Agile
Universe Conference, Chicago, IL, August 2002, pp.
185-196.

[20] Williams, L., L. Layman, and W. Krebs, "Extreme
Programming Evaluation Framework for Object-
Oriented Languages -- Version 1.4," North Carolina
State University Department of Computer Science TR-
2004-18, 2004.

[21] Williams, L., W. Krebs, L. Layman, and A. Antón, "Toward
a Framework for Evaluating Extreme Programming,"
8th International Conference on Empirical Assessment
in Software Engineering (EASE 04), May 2004, pp. 11-
20.

[22] Williams, Laurie, William Krebs, Lucas Layman, and Annie
Antón, Toward a Framework for Evaluating Extreme
Programming. 2004, North Carolina State University:
Raleigh, NC.

[23] Yin, R.K., Case Study Research: Design and Method, Third
ed, Vol. 5, Thousand Oaks, CA: Sage Publications,
2003.

[24] Zelkowitz, M.V. and D.R. Wallace, "Culture Conflicts in
Software Engineering Technology Transfer," NASA
Goddard Software Engineering Workshop, 1998.

23

[25] Zelkowitz, M.V. and D.R. Wallace, "Experimental Models
for Validating Technology," IEEE Computer, vol. 31,
No. 5, pp. 23-31, May 1998.

[26]

24

