gvsu/cs677/hw4/hw.tex
josh 05642c312b updated hw.tex for hw4
git-svn-id: svn://anubis/gvsu@236 45c1a28c-8058-47b2-ae61-ca45b979098e
2008-11-20 00:56:19 +00:00

44 lines
1.1 KiB
TeX

% Preamble
\documentclass[11pt,fleqn]{article}
\usepackage{amsmath, amsthm, amssymb}
\usepackage{fancyhdr}
\oddsidemargin -0.25in
\textwidth 6.75in
\topmargin -0.5in
\headheight 0.75in
\headsep 0.25in
\textheight 8.75in
\pagestyle{fancy}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\fancyhf{}
\lhead{HW Chap. 4\\\ \\\ }
\rhead{Josh Holtrop\\2008-12-03\\CS 677}
\rfoot{\thepage}
\begin{document}
\noindent
\begin{enumerate}
\item[1.]{
In store-and-forward communication, the communication cost is given by
$$T_{\mathrm{comm}} = t_s + (t_h + mt_w)\ell = t_s + \ell t_h + \ell mt_w$$
In cut-through routing, the communication cost is given by
$$T_{\mathrm{comm}} = t_s + \ell t_h + mt_w$$
Since the ``header'' is the only part of the communication that is
encountering overhead for the $\ell$ links in the communication network,
cut-through routing can save communication time on the order of
$(\ell - 1) mt_w$.
Obviously, this makes cut-through routing only advantageous on
architectures with $\ell > 1$, meaning non-fully-connected networks.
}
\vskip 1em
\item[2.]{
}
\end{enumerate}
\end{document}