gvsu/cs677/final/NewtonComputation.cc
josh 22f840d3d5 converted computations to use the C++ complex<double> class
git-svn-id: svn://anubis/gvsu@325 45c1a28c-8058-47b2-ae61-ca45b979098e
2008-12-07 23:23:24 +00:00

68 lines
2.4 KiB
C++

#include <math.h> /* sqrt() */
#include <complex>
#include "NewtonComputation.h"
using namespace std;
#define LEEWAY 0.001
#define ITERATIONS 32
#define CLOSE_ENOUGH(z, x, y) \
(fabs(real(z) - (x)) < LEEWAY && fabs(imag(z) - (y)) < LEEWAY)
/*
* This Computation class generates a design in the complex plane
* which shows which complex points go to which of the six roots
* of the equation z^6-1=0 using Newton's method of finding roots
*/
unsigned int NewtonComputation::compute(double x, double y)
{
complex<double> rootGuess(x, y);
static double halfRoot3 = sqrt(3) / 2.0;
for (int iter = 0; iter < ITERATIONS; iter++)
{
/* percentage of color to illuminate based on current iteration */
double pIlum = (double) (ITERATIONS - iter) / (double) ITERATIONS;
/*
* These if statements check to see if the complex number (the root guess)
* is within LEEWAY distance of a real root. If so, a unique color is returned
* reflecting which root it is close to and how many iterations it took
* for the root guess to get to that root
*/
if (CLOSE_ENOUGH(rootGuess, 1, 0))
{
return ((unsigned int)(0xFF * pIlum)) << 16;
}
if (CLOSE_ENOUGH(rootGuess, -1, 0))
{
return (((unsigned int)(0xFF * pIlum)) << 16) + (((unsigned int)(0xFF * pIlum)) << 8);
}
if (CLOSE_ENOUGH(rootGuess, 0.5, halfRoot3))
{
return ((unsigned int)(0xFF * pIlum)) << 8;
}
if (CLOSE_ENOUGH(rootGuess, -0.5, halfRoot3))
{
return (unsigned int)(0x88 * pIlum);
}
if (CLOSE_ENOUGH(rootGuess, 0.5, -halfRoot3))
{
return (unsigned int)(0xFF * pIlum);
}
if (CLOSE_ENOUGH(rootGuess, -0.5, -halfRoot3))
{
return (((unsigned int)(0xFF * pIlum)) << 16) + (unsigned int)(0xFF * pIlum);
}
/* This expression evaluates the next complex number to be tested
* for being close to a root. It uses Newton's method for finding
* roots of equations according to the following recursive equation:
* x_n+1 = x_n - y_n / dy_n
* --> x_n+1 = x_n - x_n^6 / 6x_n^5
* More information can be found at:
* http://www.willamette.edu/~sekino/fractal/fractal.htm
*/
rootGuess -= (pow(rootGuess, 6.0) - 1.0) / (6.0 * pow(rootGuess, 5.0));
}
}