gvsu/cs677/pa2/threaded.cc
josh a702f7fffc added timing info using gettimeofday() to determine elapsed time
git-svn-id: svn://anubis/gvsu@182 45c1a28c-8058-47b2-ae61-ca45b979098e
2008-09-27 21:42:20 +00:00

283 lines
8.3 KiB
C++

/*
* Josh Holtrop
* 2008-10-01
* Grand Valley State University
* CS677
* Programming Assignment #2
*/
#include <iostream>
#include <fstream>
#include <vector>
#include <pthread.h>
#include <sys/time.h> /* gettimeofday(), struct timeval */
using namespace std;
#define eq(x, y) ( ( (x) == (y) ) || ( (x) == '?' ) || ( (y) == '?' ) )
void usage(char * prog);
void * calcSimMatrixThread(void * arg);
bool readFile(char * fileName, vector<char> & v);
pthread_barrier_t barrier;
int num_threads;
int * matrix;
vector<char> * s;
vector<char> * t;
struct retval_t
{
int max_val;
int max_i;
int max_j;
} retval;
/* Print basic usage information */
void usage(char * prog)
{
cout << "Usage: " << prog << " [-n <num_threads>] <file1> <file2>" << endl;
exit(42);
}
/*
* taskAllocate() will divide a set of total_tasks tasks into
* total_workers groups, as evenly as possible
* Parameters:
* total_tasks : IN : the total number of tasks to divide up
* total_workers : IN : the total number of workers to allocate tasks to (>0)
* this_id : IN : the id (base 0) of the task calling us for work
* first_task_id : OUT : the id (base 0) of the first task for this worker
* num : OUT : the number of tasks assigned to this worker
*/
inline void taskAllocate(int total_tasks, int total_workers, int this_id,
int * first_task_id, int * num)
{
int l_num;
int leftovers = total_tasks % total_workers; /* num of "leftover" tasks */
if (this_id < leftovers)
{
l_num = total_tasks / total_workers + 1; /* do one of the leftovers */
*first_task_id = l_num * this_id;
}
else
{
l_num = total_tasks / total_workers;
*first_task_id = l_num * this_id + leftovers;
}
*num = l_num;
}
int main(int argc, char * argv[])
{
vector<char> files[2];
num_threads = 1;
int file_to_read = 0;
/* Process command-line arguments */
for (int i = 1; i < argc; i++)
{
if ( ! strcmp("-n", argv[i]) )
{
if (i == argc - 1)
usage(argv[0]);
i++;
num_threads = atoi(argv[i]);
}
else
{
if (file_to_read < 2)
readFile(argv[i], files[file_to_read]);
else
usage(argv[0]);
file_to_read++;
}
}
if (file_to_read != 2)
usage(argv[0]);
s = &files[0];
t = &files[1];
pthread_t * threads = new pthread_t[num_threads];
matrix = new int[(files[0].size() + 1) * (files[1].size() + 1)];
pthread_barrier_init(&barrier, NULL, num_threads);
struct timeval before, after;
gettimeofday(&before, NULL); /* Start timing */
/* Create num_threads worker threads */
for (int i = 0; i < num_threads; i++)
{
int * arg = new int;
*arg = i;
int ret = pthread_create(&threads[i], NULL, &calcSimMatrixThread, arg);
if (ret)
{
cerr << "Error " << ret << " when creating thread!" << endl;
return -4;
}
}
/* Wait for the worker threads to exit and accumulate their results */
int max_val = 0, max_i = 0, max_j = 0;
for (int i = 0; i < num_threads; i++)
{
struct retval_t * retval;
pthread_join(threads[i], (void **) &retval);
if (retval->max_val == max_val)
{
if ( (retval->max_i + retval->max_j) > (max_i + max_j) )
{
max_i = retval->max_i;
max_j = retval->max_j;
}
}
else if (retval->max_val > max_val)
{
max_val = retval->max_val;
max_i = retval->max_i;
max_j = retval->max_j;
}
delete retval;
}
/* Print the maximum value and position */
cout << "Maximum value is " << max_val << " at position ("
<< max_i << ", " << max_j << ")" << endl;
gettimeofday(&after, NULL); /* Stop timing */
double time_before = before.tv_sec + before.tv_usec / 1000000.0;
double time_after = after.tv_sec + after.tv_usec / 1000000.0;
double diff = time_after - time_before;
cout << "Elapsed time: " << diff << " seconds." << endl;
/* Clean up after ourselves */
pthread_barrier_destroy(&barrier);
delete[] matrix;
delete[] threads;
return 0;
}
/* Read a file into a vector of non-space characters */
bool readFile(char * fileName, vector<char> & v)
{
ifstream in(fileName);
if (!in.is_open())
return false;
for(;;)
{
char chr;
in >> chr;
if (in.eof())
break;
v.push_back(chr);
}
return true;
}
/* Compute portions of the similarity matrix between two character arrays */
void * calcSimMatrixThread(void * arg)
{
int * realarg = (int *) arg;
int id = *realarg;
int s_size = s->size();
int t_size = t->size();
int last_step = s_size + t_size;
/* Create F as a pointer to a two-dimensional array of size
* s_size+1 X t_size+1
* This allows us to keep the similarity matrix in a stored area
* but still to access it using two-dimensional array syntax so the
* compiler does the math for us of calculating the offsets into
* the array based on s_size and t_size
*/
int (*F)[s_size+1][t_size+1] = (int (*) [s_size+1][t_size+1]) matrix;
int max_i = 0, max_j = 0, max_val = 0;
int first_task_id, num_tasks;
taskAllocate(t_size+1, num_threads, id, &first_task_id, &num_tasks);
for (int i = 0, idx = first_task_id; i < num_tasks; i++, idx++)
(*F)[0][idx] = 0; /* set first row to 0's */
taskAllocate(s_size+1, num_threads, id, &first_task_id, &num_tasks);
for (int i = 0, idx = first_task_id; i < num_tasks; i++, idx++)
(*F)[idx][0] = 0; /* set first column to 0's */
pthread_barrier_wait(&barrier); /* Wait for all threads to finish */
for (int step = 2; step <= last_step; step++)
{
int first_i = step - 1;
int first_j = 1;
int last_i = 1;
int last_j = step - 1;
if (first_i > s_size) /* Adjust if past bottom of matrix */
{
first_j += (first_i - s_size);
first_i = s_size;
}
if (last_j > t_size) /* Adjust if past right of matrix */
{
last_i += (last_j - t_size);
last_j = t_size;
}
num_tasks = (last_j - first_j) + 1; /* first through last inclusive */
taskAllocate(num_tasks, num_threads, id, &first_task_id, &num_tasks);
for (int i = first_i - first_task_id, /* this thread starting i */
j = first_j + first_task_id, /* this thread starting j */
task_id = 0;
task_id < num_tasks;
i--, j++, task_id++) /* loop diagonally num_tasks times */
{
/* Compute the value for the matrix */
(*F)[i][j] =
max(
max(
(*F)[i][j-1] - 2,
(*F)[i-1][j-1] +
(eq(s->at(i-1), t->at(j-1)) ? 1 : -1)
),
max(
(*F)[i-1][j] - 2,
0
)
);
/* See if we found a new maximum value */
if ((*F)[i][j] > max_val)
{
max_val = (*F)[i][j];
max_i = i;
max_j = j;
}
else if ((*F)[i][j] == max_val)
{
/* If we found a value the same as our current maximum
* value, see if it has a greater i+j value */
if ( (i + j) > (max_i + max_j) )
{
max_i = i;
max_j = j;
}
}
}
/* Wait for all threads to proceed to the next step together */
pthread_barrier_wait(&barrier);
}
#if 0
cout << "Matrix: " << s_size+1 << " x " << t_size+1 << endl;
for (int i = 0; i <= s_size; i++)
{
for (int j = 0; j <= t_size; j++)
{
printf("%2d ", (*F)[i][j]);
}
printf("\n");
}
#endif
struct retval_t * retval = new struct retval_t;
retval->max_val = max_val;
retval->max_i = max_i;
retval->max_j = max_j;
delete realarg;
return retval;
}