Reclaim bootloader page table pages

This commit is contained in:
Josh Holtrop 2022-11-06 21:59:42 -05:00
parent b3fb599b25
commit 71c30fa932
4 changed files with 153 additions and 90 deletions

View File

@ -1,20 +1,18 @@
/** /**
* HIPPO, the HOS In-place Physical Page Organizer. * HIPPO, the HOS In-place Physical Page Organizer.
*
* HIPPO maintains a list of free physical pages "in place", meaning that the
* available page itself is used as the linked list entry so separate memory
* is not needed to keep track of the available pages.
*/ */
module hulk.hippo; module hulk.hippo;
import hulk.header;
import hulk.bootinfo;
import hulk.klog;
import hulk.linker_addresses;
import hulk.pagetable;
struct hippo struct hippo
{ {
/** /**
* Linked list node entry for a physical page. * Linked list node entry for a physical page.
*/ */
private struct PhysicalPage private static struct PhysicalPage
{ {
PhysicalPage * next; PhysicalPage * next;
} }
@ -27,96 +25,25 @@ struct hippo
/** /**
* Number of free physical pages. * Number of free physical pages.
*/ */
private static __gshared size_t n_free_pages; private static __gshared size_t m_n_free_pages;
/**
* Physical address limit.
*/
public static __gshared size_t physical_address_limit;
/**
* Initialize HIPPO.
*
* Ok, what we do here is iterate through all of the memory map regions in
* the bootinfo memory_map array, and create a linked list of all free
* physical pages that are available. Within the available memory regions,
* we have to watch out for the following items:
* 1) HULK binary (text + data)
* - This includes the HULK header and bootinfo structures
* 2) HULK bss
* 3) HULK stack
* 4) Framebuffer
* 5) Page tables
*
* @param bootinfo HULK boot information structure.
*/
public static void initialize(HulkHeader * header)
{
size_t usable_memory;
ulong[2][4] reserved = [
[header.bootinfo.hulk_phys, LinkerAddresses.hulk_binary_size],
[header.bootinfo.bss_phys, LinkerAddresses.hulk_bss_size],
[header.bootinfo.stack_phys, header.stack_size],
[cast(ulong)header.bootinfo.fb.buffer, header.bootinfo.fb.height * header.bootinfo.fb.stride * 4u],
];
for (size_t ri = 0u; ri < reserved.length; ri++)
{
reserved[ri][1] += reserved[ri][0];
}
for (size_t bii = 0u; bii < header.bootinfo.memory_map_count; bii++)
{
if ((header.bootinfo.memory_map[bii].type == BootInfo.MemoryRegion.Type.Bootloader) ||
(header.bootinfo.memory_map[bii].type == BootInfo.MemoryRegion.Type.Conventional))
{
ulong phys = header.bootinfo.memory_map[bii].base;
ulong phys_end = phys + header.bootinfo.memory_map[bii].size;
if (phys_end > physical_address_limit)
{
physical_address_limit = phys_end;
}
usable_memory += header.bootinfo.memory_map[bii].size;
while (phys < phys_end)
{
bool is_reserved = false;
for (size_t ri = 0u; ri < reserved.length; ri++)
{
if ((reserved[ri][0] <= phys) && (phys < reserved[ri][1]))
{
is_reserved = true;
break;
}
}
if (!is_reserved)
{
free_page(phys);
}
phys += PAGE_SIZE;
}
}
}
size_t usable_kb = usable_memory >> 10u;
size_t usable_mb = usable_kb >> 10u;
size_t frac_mb = ((1000u * (usable_kb & 0x3FFu)) + 512u) >> 10u;
klog.writefln("Found %u.%03uMB of usable RAM", usable_mb, frac_mb);
}
/** /**
* Free a physical page. * Free a physical page.
* *
* @param phys Physical page address. * @param phys Physical page address.
*/ */
private static void free_page(ulong phys) public static void free_page(T)(T phys)
{ {
PhysicalPage * pp = cast(PhysicalPage *)phys; PhysicalPage * pp = cast(PhysicalPage *)phys;
pp.next = free_pages; pp.next = free_pages;
free_pages = pp; free_pages = pp;
n_free_pages++; m_n_free_pages++;
} }
/** /**
* Allocate a physical page. * Allocate a physical page.
* *
* @return Page address, or null if none available. * @return Page address, or null if no pages are available.
*/ */
public static void * allocate_page() public static void * allocate_page()
{ {
@ -125,7 +52,18 @@ struct hippo
{ {
pp = free_pages; pp = free_pages;
free_pages = free_pages.next; free_pages = free_pages.next;
m_n_free_pages--;
} }
return cast(void *)pp; return cast(void *)pp;
} }
/**
* Get the number of free pages.
*
* @return The number of free pages.
*/
public @property size_t n_free_pages() const
{
return m_n_free_pages;
}
} }

View File

@ -64,7 +64,6 @@ void hulk_start()
klog.writefln("Welcome to HULK, the HOS UltraLight Kernel!"); klog.writefln("Welcome to HULK, the HOS UltraLight Kernel!");
hippo.initialize(&hulk_header);
hurl.initialize(&hulk_header); hurl.initialize(&hulk_header);
pci.initialize(); pci.initialize();
pic.initialize(); pic.initialize();

View File

@ -10,6 +10,7 @@ import hulk.cpu;
import hulk.hippo; import hulk.hippo;
import hulk.memory; import hulk.memory;
import hulk.klog; import hulk.klog;
import hulk.bootinfo;
import hulk.header; import hulk.header;
import hulk.linker_addresses; import hulk.linker_addresses;
@ -24,20 +25,24 @@ enum ulong HULK_VIRTUAL_FRAMEBUFFER_ADDRESS = 0xFFFF_A000_0000_0000u;
struct hurl struct hurl
{ {
/**
* Pointer to the base page table.
*/
private static __gshared PageTable * m_pt_base; private static __gshared PageTable * m_pt_base;
/** /**
* Initialize HURL. * Build HULK page tables.
* *
* @param bootinfo HULK boot information structure. * @param physical_address_limit
* Limit of physical memory.
*/ */
public static void initialize(HulkHeader * header) private static void build_page_tables(HulkHeader * header, size_t physical_address_limit)
{ {
m_pt_base = allocate_pt(); m_pt_base = allocate_pt();
/* Identity map all physical RAM. */ /* Identity map all physical RAM. */
map_range(0u, map_range(0u,
0u, 0u,
hippo.physical_address_limit, physical_address_limit,
PT_WRITABLE | PT_NO_EXECUTE); PT_WRITABLE | PT_NO_EXECUTE);
ulong phys_address = header.bootinfo.hulk_phys; ulong phys_address = header.bootinfo.hulk_phys;
ulong virt_address = HULK_VIRTUAL_BASE_ADDRESS; ulong virt_address = HULK_VIRTUAL_BASE_ADDRESS;
@ -86,7 +91,125 @@ struct hurl
write_cr3(cast(ulong)m_pt_base); write_cr3(cast(ulong)m_pt_base);
} }
public static void map(ulong virtual, ulong physical, ulong flags) /**
* Reclaim the pages that were used for the bootloader page tables.
*
* @param pt
* The page table to reclaim pages from.
* @param level
* Page table level (internally used while recursing the page tables).
*
* @return Number of pages reclaimed.
*/
private static size_t reclaim_bootloader_page_table_pages(PageTable * pt, size_t level = 0u)
{
map(pt, pt, PT_WRITABLE | PT_NO_EXECUTE);
size_t reclaimed_pages;
for (size_t i = 0u; i < PageTable.N_ENTRIES; i++)
{
PageTableEntry pte = (*pt)[i];
if (pte.present && (level < 2u) && !pte.huge)
{
/* For the first two levels of page tables, first
* recurse and free pages from the lower level page
* tables before reclaiming this entry. */
reclaimed_pages += reclaim_bootloader_page_table_pages(pte.follow(), level + 1u);
}
}
hippo.free_page(pt);
reclaimed_pages++;
return reclaimed_pages;
}
/**
* Initialize HURL.
*
* @param bootinfo HULK boot information structure.
*/
public static void initialize(HulkHeader * header)
{
PageTable * bootloader_pt_base = cast(PageTable *)read_cr3();
/*
* Ok, what we do here is iterate through all of the memory map regions
* in the bootinfo memory_map array and mark each page that is not in
* use in a reserved range as available. Within the available memory
* regions, we have to watch out for the following items:
* 1) HULK binary (header + text + rodata + data)
* 2) Framebuffer
* In addition to these ranges, there are also pages for the following
* purposes that are not represented in the memory map from the
* bootloader:
* 3) HULK BSS
* 4) HULK stack
* 5) bootloader page table pages
*/
size_t usable_memory;
size_t physical_address_limit;
ulong[2][2] reserved = [
[header.bootinfo.hulk_phys, LinkerAddresses.hulk_binary_size],
[cast(ulong)header.bootinfo.fb.buffer, header.bootinfo.fb.height * header.bootinfo.fb.stride * 4u],
];
for (size_t ri = 0u; ri < reserved.length; ri++)
{
reserved[ri][1] += reserved[ri][0];
}
for (size_t bii = 0u; bii < header.bootinfo.memory_map_count; bii++)
{
if ((header.bootinfo.memory_map[bii].type == BootInfo.MemoryRegion.Type.Bootloader) ||
(header.bootinfo.memory_map[bii].type == BootInfo.MemoryRegion.Type.Conventional))
{
ulong phys = header.bootinfo.memory_map[bii].base;
ulong phys_end = phys + header.bootinfo.memory_map[bii].size;
if (phys_end > physical_address_limit)
{
physical_address_limit = phys_end;
}
usable_memory += header.bootinfo.memory_map[bii].size;
while (phys < phys_end)
{
bool is_reserved = false;
for (size_t ri = 0u; ri < reserved.length; ri++)
{
if ((reserved[ri][0] <= phys) && (phys < reserved[ri][1]))
{
is_reserved = true;
break;
}
}
if (!is_reserved)
{
hippo.free_page(phys);
}
phys += PAGE_SIZE;
}
}
}
/*
* Now that we have available physical pages to allocate from, we can
* build new page tables to replace the bootloader page tables.
*/
build_page_tables(header, physical_address_limit);
/*
* After we have switched to the newly constructed page tables, we can
* iterate through and free the bootloader page tables. They are most
* likely already mapped because we just identity mapped every page up
* to the physical_address_limit determined above. But just in case the
* bootloader used the last pages of RAM for the page table pages, we
* will make sure to map them as we traverse them.
*/
size_t reclaimed_bootloader_page_table_memory = reclaim_bootloader_page_table_pages(bootloader_pt_base) << 10u;
usable_memory += reclaimed_bootloader_page_table_memory;
usable_memory += LinkerAddresses.hulk_bss_size;
usable_memory += header.stack_size;
klog.writefln("Usable memory: %uKB", usable_memory >> 10u);
klog.writefln("Kernel size: %uKB", (LinkerAddresses.hulk_binary_size + LinkerAddresses.hulk_bss_size + header.stack_size) >> 10u);
}
public static void map(T, U)(T virtual, U physical, ulong flags)
{ {
PageTable * pt = m_pt_base; PageTable * pt = m_pt_base;
for (size_t level = 0; level < 4u; level++) for (size_t level = 0; level < 4u; level++)
@ -108,7 +231,7 @@ struct hurl
} }
else else
{ {
*ppte = PageTableEntry(physical, flags | PT_PRESENT); *ppte = PageTableEntry(cast(ulong)physical, flags | PT_PRESENT);
} }
} }
} }

View File

@ -136,8 +136,11 @@ static assert(PageTableEntry.sizeof == 8u);
*/ */
struct PageTable struct PageTable
{ {
/** Number of page table entries in a page table. */
enum size_t N_ENTRIES = 512u;
/** Page table entries. */ /** Page table entries. */
private PageTableEntry[512] entries; private PageTableEntry[N_ENTRIES] entries;
/** /**
* Access the PageTableEntry for the given address and page table level. * Access the PageTableEntry for the given address and page table level.