#include #include "mm.h" #include "stack.h" #include "boot/k_early_panic.h" #include "lang/string.h" #include "lang/kio.h" #include "sys/cpu.h" #define MM_MAX_MMAP_ENTRIES 64 static pagedirectory_entry_t * page_directory; static mm_mem_range_t mm_mmap_entries[MM_MAX_MMAP_ENTRIES]; static int mm_mmap_num_entries = 0; static int mm_num_free_pages = 0; static int mm_num_used_pages = 0; static u32_t * mm_free_page_ptr = NULL; gdtr_t mm_gdtr; static u64_t * mm_gdt; /************************************************************************** * This function is run in segmented memory before paging is in effect. * *************************************************************************/ void mm_record_mmap_entry(mb_mmap_t * mmap) { if (mm_mmap_num_entries < MM_MAX_MMAP_ENTRIES) { if (mmap->type == MB_MMAP_TYPE_RAM) { mm_mmap_entries[mm_mmap_num_entries].base = mmap->base; mm_mmap_entries[mm_mmap_num_entries].length = mmap->length; mm_mmap_num_entries++; } } else { k_early_panic("Too many mmap_entries!"); } } /************************************************************************** * This function is run in segmented memory before paging is in effect. * * It is run after the bootloader information has been read, so we can * * overwrite that memory now. * *************************************************************************/ void mm_bootstrap() { u32_t max_ram_address = KERNEL_PHYSICAL_ADDRESS + KERNEL_SIZE - 1; if (mm_mmap_num_entries < 1) { k_early_panic("No mmap entries read from bootloader!"); } for (int mmap_idx = 0; mmap_idx < mm_mmap_num_entries; mmap_idx++) { u32_t base_address = mm_mmap_entries[mmap_idx].base; if (base_address & PAGE_LOW_MASK) { /* start of this mmap range is not page-aligned */ base_address = (base_address & PAGE_HIGH_MASK) + PAGE_SIZE; } u32_t address_limit = mm_mmap_entries[mmap_idx].base + mm_mmap_entries[mmap_idx].length; if (address_limit & PAGE_LOW_MASK) { /* end of this mmap range is not page-aligned */ address_limit &= PAGE_HIGH_MASK; } /* record the highest RAM address found */ if ((address_limit - 1) > max_ram_address) { max_ram_address = (address_limit - 1); } /* * loop through every page in the mmap range and add * pages into the free page linked list */ u32_t * last_page = NULL; while (base_address < address_limit) { /* check to make sure the RAM page is ok */ if ( base_address > 0 /* don't map address 0 */ && ( base_address + PAGE_SIZE <= KERNEL_PHYSICAL_ADDRESS || base_address >= KERNEL_PHYSICAL_ADDRESS + KERNEL_SIZE ) ) { /* we found a page to add to the free list */ u32_t * page_virtual_address = (u32_t *)(base_address + KERNEL_OFFSET); *page_virtual_address = 0; if (last_page == NULL) { mm_free_page_ptr = (u32_t *) base_address; } else { *last_page = base_address; } last_page = page_virtual_address; mm_num_free_pages++; } base_address += PAGE_SIZE; } } if (mm_num_free_pages < 10) { k_early_panic("Not enough free pages of RAM!"); } /* ok, now mm_page_alloc() should be functional */ /* allocate the page directory */ u32_t page_directory_phys = mm_early_page_alloc(); page_directory = (pagedirectory_entry_t *) page_directory_phys; pagedirectory_entry_t * page_dir_virt = (pagedirectory_entry_t *) (page_directory_phys + KERNEL_OFFSET); /* Clear the page directory */ for (unsigned int i = 0; i < NUM_PAGETABLE_ENTRIES; i++) { page_dir_virt[i] = 0; } /* * map all of RAM into the virtual address space * starting at address 0x0 (except the null page) */ for (u32_t page_base = PAGE_SIZE; page_base < max_ram_address; page_base += PAGE_SIZE) { mm_early_map(page_base, page_base, 0, 1); } /* now map the kernel's virtual address space into RAM */ for (u32_t page_base = KERNEL_VIRTUAL_ADDRESS; page_base < KERNEL_VIRTUAL_ADDRESS + KERNEL_SIZE; page_base += PAGE_SIZE) { /* map page_base to page_base - KERNEL_OFFSET */ mm_early_map(page_base, page_base - KERNEL_OFFSET, 0, 1); } /* set up the global descriptor table */ u32_t gdt_base = mm_early_page_alloc(); mm_gdt = (u64_t *) ((u32_t) gdt_base + (u32_t) KERNEL_OFFSET); mm_gdt[0] = 0x0ull; mm_gdt[1] = MAKE_DESCRIPTOR(0, 0xFFFFF, 1, 0, 1, 1); /* kernel code */ mm_gdt[2] = MAKE_DESCRIPTOR(0, 0xFFFFF, 1, 0, 1, 0); /* kernel data */ mm_gdtr.limit = 3 * sizeof(mm_gdt[0]) - 1; mm_gdtr.base = gdt_base; /* set the page directory base register */ set_cr3(page_directory); } /************************************************************************** * Map virtual_address to physical_address. * * Both addresses should be page-aligned. * * This 'early' version can be used during segmented bootstrapping * *************************************************************************/ int mm_early_map(u32_t virtual_address, u32_t physical_address, u32_t user_mode, u32_t writable) { u32_t directory_index = (virtual_address >> 22) & 0x3FF; u32_t table_index = (virtual_address >> 12) & 0x3FF; pagedirectory_entry_t * page_dir = page_directory; page_dir = (pagedirectory_entry_t *)((u32_t)page_dir + KERNEL_OFFSET); if (page_dir[directory_index] == 0) { /* allocate a new page table */ u32_t page_table_address = mm_early_page_alloc(); if (page_table_address == 0) { return 0; } page_dir[directory_index] = page_table_address | 0x1 << 2 /* PTs can be user mode */ | 0x1 << 1 /* writable */ | 0x1; /* present */ } u32_t page_table_address = page_dir[directory_index] & PAGE_HIGH_MASK; u32_t * page_table = (u32_t *) page_table_address; page_table = (u32_t *)((u32_t)page_table + (u32_t)KERNEL_OFFSET); page_table[table_index] = (physical_address & PAGE_HIGH_MASK) | (user_mode & 0x1) << 2 | (writable & 0x1) << 1 | 0x1; /* present */ return 1; } /************************************************************************** * Map virtual_address to physical_address. * * Both addresses should be page-aligned. * *************************************************************************/ int mm_map(u32_t virtual_address, u32_t physical_address, u32_t user_mode, u32_t writable) { u32_t directory_index = (virtual_address >> 22) & 0x3FF; u32_t table_index = (virtual_address >> 12) & 0x3FF; pagedirectory_entry_t * page_dir = page_directory; if (page_dir[directory_index] == 0) { /* allocate a new page table */ u32_t page_table_address = mm_page_alloc(); if (page_table_address == 0) { return 0; } page_dir[directory_index] = page_table_address | 0x1 << 2 /* PTs can be user mode */ | 0x1 << 1 /* writable */ | 0x1; /* present */ } u32_t page_table_address = page_dir[directory_index] & PAGE_HIGH_MASK; u32_t * page_table = (u32_t *) page_table_address; page_table[table_index] = (physical_address & PAGE_HIGH_MASK) | (user_mode & 0x1) << 2 | (writable & 0x1) << 1 | 0x1; /* present */ return 1; } /************************************************************************** * Returns the physical base address of a page in RAM * * or 0 if no pages were available * * This 'early' version is to be called during segmented bootstrapping * *************************************************************************/ u32_t mm_early_page_alloc() { u32_t page_address = 0; if (mm_free_page_ptr != NULL) { u32_t * page_ptr = mm_free_page_ptr; page_ptr = (u32_t *) ((u32_t)page_ptr + (u32_t)KERNEL_OFFSET); page_address = (u32_t) mm_free_page_ptr; mm_free_page_ptr = (u32_t *) *page_ptr; mm_num_free_pages--; mm_num_used_pages++; } return page_address; } /************************************************************************** * Returns the physical base address of a page in RAM * * or 0 if no pages were available * *************************************************************************/ u32_t mm_page_alloc() { u32_t page_address = 0; if (mm_free_page_ptr != NULL) { u32_t * page_ptr = mm_free_page_ptr; page_address = (u32_t) mm_free_page_ptr; mm_free_page_ptr = (u32_t *) *page_ptr; mm_num_free_pages--; mm_num_used_pages++; } return page_address; } void mm_print_memory_map() { kprintf("Bootloader provided memory map:\n"); kprintf(" Base Address Length\n"); for (int i = 0; i < mm_mmap_num_entries; i++) { kprintf(" 0x%016X 0x%016X (%l bytes / %l KB / %l MB)\n", mm_mmap_entries[i].base, mm_mmap_entries[i].length, mm_mmap_entries[i].length, mm_mmap_entries[i].length >> 10, mm_mmap_entries[i].length >> 20); } kprintf("Used pages: %d\n", mm_num_used_pages); kprintf("Free pages: %d\n", mm_num_free_pages); }