hos/kernel/fs/ext2.c

746 lines
25 KiB
C

// ext2.c
// Author: Josh Holtrop
// Date: 08/22/04
// Modified: 12/24/04
#include "hos_defines.h"
#include "fs/devices.h"
#include "kout.h"
#include "ext2.h"
#include "mm/vmm.h"
#include "fs/vfs.h"
#include "lang/lang.h"
#include "functions.h"
/* Turning an inode number into a (group, inode_index) pair:
* group = (inode - 1) / s_inodes_per_group
* index = (inode - 1) % s_inodes_per_group
*/
vfs_fs_t ext2_driver = {ext2_mount_super, ext2_umount_super, ext2_stat,
ext2__get_root_dir_inode, ext2__link_deref,
ext2__free_inodes, ext2__total_inodes,
ext2__free_blocks, ext2__total_blocks,
ext2_alloc_inode, ext2_free_inode, ext2_alloc_block, ext2_free_block,
ext2__open_dir, ext2__read_dir, ext2__close_dir,
ext2__open_file, ext2__read_file, ext2__close_file,
ext2__open_block_file, ext2__read_block_file, ext2__block_file_seek, ext2__close_block_file};
// initialize the filesystem driver
int ext2_init(int fsID)
{
vfs_fs_t *fs;
if (( fs = New(vfs_fs_t) )) // give the VFS our FS structure
{
*fs = ext2_driver;
vfs_register_fs(fsID, fs);
return 0;
}
return -1;
}
// lookup a file name in a directory and store the directory entry for it
int ext2_dir_lookup(vfs_mount_t *mount, u32_t dir_inode, char *fileName, ext2_dir_entry_t *direntry)
{
ext2_open_dir_t *dir = ext2_open_dir(mount, dir_inode);
if (!dir)
return -1; // bad directory inode number
ext2_dir_entry_t dentry;
while (!ext2_dir_read_entry(mount, dir, &dentry))
{
char *dentryName = kcalloc(1, dentry.name_length + 1);
memcpy(dentryName, dentry.name, dentry.name_length);
int res = strcmp(fileName, dentryName);
kfree(dentryName);
if (!res)
{
*direntry = dentry;
ext2_close_dir(mount, dir);
return 0;
}
}
ext2_close_dir(mount, dir);
return -2;
}
// open a directory by inode number for reading
ext2_open_dir_t *ext2_open_dir(vfs_mount_t *mount, u32_t inode_number)
{
ext2_open_dir_t *open_dir = New(ext2_open_dir_t);
ext2_open_inode_t *open_inode = ext2_open_inode(mount, inode_number);
if (!open_inode)
{
kfree(open_dir);
return NULL;
}
if ((open_inode->inode.i_mode & EXT2_I_MODE_TYPE_MASK) != EXT2_I_MODE_DIR)
{
ext2_close_inode(mount, open_inode);
kfree(open_dir);
return NULL;
}
open_dir->open_inode = open_inode;
open_dir->position = 0;
return open_dir;
}
int ext2_dir_read_entry(vfs_mount_t *mount, ext2_open_dir_t *open_dir, ext2_dir_entry_t *dentry)
{
ext2_super_block_t *super = mount->super;
if (open_dir->position >= open_dir->open_inode->inode.i_size)
return -1; // EOF
u32_t dir_block = open_dir->position >> (10 + super->s_log_block_size);
char *block = kmalloc(2048 << super->s_log_block_size);
ext2_inode_seek(mount, open_dir->open_inode, dir_block);
if (ext2_read_inode_block(mount, open_dir->open_inode, block))
ext2_read_inode_block(mount, open_dir->open_inode, block + (1024 << super->s_log_block_size));
ext2_dir_entry_t *dir_entry = (ext2_dir_entry_t *)(block + open_dir->position % (1024 << super->s_log_block_size));
if (!dir_entry->inode)
{
kfree(block);
return -2; // EOF
}
memcpy(dentry, dir_entry, min(dir_entry->length, sizeof(ext2_dir_entry_t)));
open_dir->position += dir_entry->length;
kfree(block);
return 0;
}
int ext2_close_dir(vfs_mount_t *mount, ext2_open_dir_t *open_dir)
{
ext2_close_inode(mount, open_dir->open_inode);
kfree(open_dir);
return 0;
}
// open an inode for reading
ext2_open_inode_t *ext2_open_inode(vfs_mount_t *mount, u32_t inode_number)
{
ext2_open_inode_t *open_inode = New(ext2_open_inode_t);
if ( ext2_read_inode(mount, inode_number, &(open_inode->inode)) )
{
kfree(open_inode);
return NULL;
}
open_inode->block = 0;
open_inode->block_pointers = NULL;
open_inode->block_pointers_start = 0;
mount->refs++;
return open_inode;
}
// seek to a certain block of an open inode
int ext2_inode_seek(vfs_mount_t *mount, ext2_open_inode_t *open_inode, u32_t block_number)
{
ext2_super_block_t *super = mount->super;
if (open_inode->inode.i_size <= (block_number << (10 + super->s_log_block_size)))
return -1; // at or past EOF
open_inode->block = block_number;
return 0;
}
// returns number of bytes read
int ext2_read_inode_block(vfs_mount_t *mount, ext2_open_inode_t *open_inode, void *block)
{
ext2_super_block_t *super = mount->super;
if (open_inode->inode.i_size <= (open_inode->block << (10 + super->s_log_block_size)))
return 0; // at or past EOF
u32_t leftover_bytes = open_inode->inode.i_size - (open_inode->block << (10 + super->s_log_block_size));
u32_t block_number = ext2_block_number(mount, open_inode);
block_read(mount->major, mount->minor, ext2_FSToDiskBlock(block_number, super),
2 << super->s_log_block_size, block);
open_inode->block++;
return min(leftover_bytes, 1024 << super->s_log_block_size);
}
// close an open inode
int ext2_close_inode(vfs_mount_t *mount, ext2_open_inode_t *open_inode)
{
mount->refs--;
if (open_inode->block_pointers)
kfree(open_inode->block_pointers); // free the block pointers cache
kfree(open_inode);
return 0;
}
// check the status of an inode (1-based inode number)
// -1: invalid inode number
// 0: free inode
// 1: allocated inode
int ext2_inode_status(vfs_mount_t *mount, u32_t inode_number)
{
ext2_super_block_t *super = mount->super;
if (inode_number < 1 || inode_number > super->s_inodes_count) // inode number invalid
return -1;
inode_number--; // turn inode_number into a 0-based index
u32_t group = inode_number / super->s_inodes_per_group;
u32_t index = inode_number % super->s_inodes_per_group;
u32_t inode_bitmap_block = ext2_get_group_desc(mount, group).bg_inode_bitmap + (index >> (13 + super->s_log_block_size));
u32_t bitmap_index = index % (8192 << super->s_log_block_size);
u8_t *inode_bitmap = kmalloc(1024 << super->s_log_block_size);
block_read(mount->major, mount->minor,
ext2_FSToDiskBlock(inode_bitmap_block, super), 2 << super->s_log_block_size, inode_bitmap);
int inode_status = (inode_bitmap[bitmap_index >> 3] >> (bitmap_index & 0x7)) & 1;
kfree(inode_bitmap);
return inode_status;
}
// check the status of a block
// -1: invalid block number
// 0: free block
// 1: allocated block
int ext2_block_status(vfs_mount_t *mount, u32_t block_number)
{
ext2_super_block_t *super = mount->super;
if (block_number < super->s_first_data_block || block_number > super->s_blocks_count) // block number invalid
return -1;
block_number -= super->s_first_data_block;
u32_t group = block_number / super->s_blocks_per_group;
u32_t index = block_number % super->s_blocks_per_group;
u32_t block_bitmap_block = ext2_get_group_desc(mount, group).bg_block_bitmap + (index >> (13 + super->s_log_block_size));
u32_t bitmap_index = index % (8192 << super->s_log_block_size);
u8_t *block_bitmap = kmalloc(1024 << super->s_log_block_size);
block_read(mount->major, mount->minor,
ext2_FSToDiskBlock(block_bitmap_block, super), 2 << super->s_log_block_size, block_bitmap);
int block_status = (block_bitmap[bitmap_index >> 3] >> (bitmap_index & 0x7)) & 1;
kfree(block_bitmap);
return block_status;
}
// transform open_inode->block (a relative block number) to an absolute block number for the filesystem
u32_t ext2_block_number(vfs_mount_t *mount, ext2_open_inode_t *open_inode)
{
if (open_inode->block < 12)
return open_inode->inode.i_block[open_inode->block];
ext2_super_block_t *super = mount->super;
int pointersPerBlock = 256 << super->s_log_block_size;
if (open_inode->block_pointers && // there is a block pointers cache block allocated
(open_inode->block >= open_inode->block_pointers_start) && // and the block number is in it
(open_inode->block < (open_inode->block_pointers_start + pointersPerBlock)))
return open_inode->block_pointers[open_inode->block - open_inode->block_pointers_start];
u32_t rel_block = open_inode->block - 12;
if (!open_inode->block_pointers)
open_inode->block_pointers = kmalloc(pointersPerBlock << 2);
if (rel_block < pointersPerBlock) // indirect block in i_block[12]
{
block_read(mount->major, mount->minor, ext2_FSToDiskBlock(open_inode->inode.i_block[12], super),
2 << super->s_log_block_size, open_inode->block_pointers);
open_inode->block_pointers_start = 12;
return open_inode->block_pointers[rel_block];
}
rel_block -= pointersPerBlock;
if (rel_block < (pointersPerBlock * pointersPerBlock)) // double-indirect block in i_block[13]
{
block_read(mount->major, mount->minor, ext2_FSToDiskBlock(open_inode->inode.i_block[13], super),
2 << super->s_log_block_size, open_inode->block_pointers);
u32_t real_block = open_inode->block_pointers[rel_block / pointersPerBlock];
block_read(mount->major, mount->minor, ext2_FSToDiskBlock(real_block, super),
2 << super->s_log_block_size, open_inode->block_pointers);
open_inode->block_pointers_start = 12 + pointersPerBlock + rel_block - (rel_block % pointersPerBlock);
return open_inode->block_pointers[rel_block % pointersPerBlock];
}
// this code shouldn't run unless we are dealing with a 65+mb file ...
rel_block -= pointersPerBlock * pointersPerBlock;
block_read(mount->major, mount->minor, ext2_FSToDiskBlock(open_inode->inode.i_block[14], super),
2 << super->s_log_block_size, open_inode->block_pointers);
u32_t index_1 = rel_block / (pointersPerBlock * pointersPerBlock);
u32_t leftover_1 = rel_block % (pointersPerBlock * pointersPerBlock);
u32_t block_1 = open_inode->block_pointers[index_1];
block_read(mount->major, mount->minor, ext2_FSToDiskBlock(block_1, super),
2 << super->s_log_block_size, open_inode->block_pointers);
u32_t index_2 = leftover_1 / pointersPerBlock;
u32_t leftover_2 = leftover_1 % pointersPerBlock;
u32_t block_2 = open_inode->block_pointers[index_2];
block_read(mount->major, mount->minor, ext2_FSToDiskBlock(block_2, super),
2 << super->s_log_block_size, open_inode->block_pointers);
open_inode->block_pointers_start = 12 + (pointersPerBlock + 1) * pointersPerBlock + rel_block - (rel_block % pointersPerBlock);
return open_inode->block_pointers[leftover_2];
}
// read the inode structure from the device
int ext2_read_inode(vfs_mount_t *mount, u32_t inode, ext2_inode_t *dat)
{
if (ext2_inode_status(mount, inode) != 1)
return -1; // free or invalid inode number
ext2_super_block_t *super = mount->super;
inode--; // turn inode into a 0-based index
u32_t group = inode / super->s_inodes_per_group;
u32_t index = inode % super->s_inodes_per_group;
u32_t inodeAddr = (ext2_get_group_desc(mount, group).bg_inode_table <<
(10 + super->s_log_block_size)) + (index << 7);
void *block = kmalloc(512);
block_read(mount->major, mount->minor, inodeAddr >> 9, 1, block);
memcpy(dat, (block + (inodeAddr & 0x1FF)), sizeof(ext2_inode_t));
kfree(block);
return 0;
}
// write an inode structure to the device
int ext2_write_inode(vfs_mount_t *mount, u32_t inode, ext2_inode_t *dat)
{
if (ext2_inode_status(mount, inode) != 1)
return -1; // free or invalid inode number
ext2_super_block_t *super = mount->super;
inode--; // turn inode into a 0-based index
u32_t group = inode / super->s_inodes_per_group;
u32_t index = inode % super->s_inodes_per_group;
u32_t inodeAddr = (ext2_get_group_desc(mount, group).bg_inode_table <<
(10 + super->s_log_block_size)) + (index << 7);
void *block = kmalloc(512);
block_read(mount->major, mount->minor, inodeAddr >> 9, 1, block);
memcpy( (block + (inodeAddr & 0x1FF)), dat, sizeof(ext2_inode_t));
block_write(mount->major, mount->minor, inodeAddr >> 9, 1, block);
kfree(block);
return 0;
}
// read the group descriptor structure from the device and return it
ext2_group_desc_t ext2_get_group_desc(vfs_mount_t *mount, u32_t group)
{
ext2_super_block_t *super = mount->super;
u32_t groupDescAddr = ((1 + super->s_first_data_block) << (10 + super->s_log_block_size)) + (group << 5);
void *block = kmalloc(512);
block_read(mount->major, mount->minor, groupDescAddr >> 9, 1, block);
ext2_group_desc_t gd = *(ext2_group_desc_t *)(block + (groupDescAddr & 0x1FF));
kfree(block);
return gd;
}
// write the group descriptor structure to the device
void ext2_write_group_desc(vfs_mount_t *mount, u32_t group_num, ext2_group_desc_t *gd)
{
ext2_super_block_t *super = mount->super;
u32_t groupDescAddr = ((1 + super->s_first_data_block) << (10 + super->s_log_block_size)) + (group_num << 5);
void *block = kmalloc(512);
block_read(mount->major, mount->minor, groupDescAddr >> 9, 1, block);
memcpy( (block + (groupDescAddr & 0x1FF)), gd, sizeof(ext2_group_desc_t) );
block_write(mount->major, mount->minor, groupDescAddr >> 9, 1, block);
kfree(block);
}
// allocate an inode and return its number
u32_t ext2_alloc_inode(vfs_mount_t *mount)
{
ext2_super_block_t *super = mount->super;
if (!super->s_free_inodes_count)
return 0; // no free inodes
int bg, bg_max = ext2_num_block_groups(super);
for (bg = 0; bg < bg_max; bg++)
{
ext2_group_desc_t group_desc = ext2_get_group_desc(mount, bg);
if (group_desc.bg_free_inodes_count)
{
u32_t node = ext2_reserve_node(mount, group_desc.bg_inode_bitmap, super->s_inodes_per_group);
group_desc.bg_free_inodes_count--;
ext2_write_group_desc(mount, bg, &group_desc);
super->s_free_inodes_count--;
return bg * super->s_inodes_per_group + node + 1;
}
}
return 0;
}
int ext2_free_inode(vfs_mount_t *mount, u32_t inode_number)
{
ext2_super_block_t *super = mount->super;
if (inode_number < 11 || inode_number > super->s_inodes_count)
return -1; // invalid inode number
if (ext2_inode_status(mount, inode_number) != 1)
return -2; // inode not allocated
inode_number--; // now a 0-based inode number
int bg = inode_number / super->s_inodes_per_group;
ext2_group_desc_t group_desc = ext2_get_group_desc(mount, bg);
ext2_free_node(mount, group_desc.bg_inode_bitmap, inode_number % super->s_inodes_per_group);
group_desc.bg_free_inodes_count++;
ext2_write_group_desc(mount, bg, &group_desc);
super->s_free_inodes_count++;
return 0;
}
// allocate a block and return its number
u32_t ext2_alloc_block(vfs_mount_t *mount)
{
ext2_super_block_t *super = mount->super;
if (!super->s_free_blocks_count)
return 0; // no free blocks
int bg, bg_max = ext2_num_block_groups(super);
for (bg = 0; bg < bg_max; bg++)
{
ext2_group_desc_t group_desc = ext2_get_group_desc(mount, bg);
if (group_desc.bg_free_blocks_count)
{
u32_t node = ext2_reserve_node(mount, group_desc.bg_block_bitmap, super->s_blocks_per_group);
group_desc.bg_free_blocks_count--;
ext2_write_group_desc(mount, bg, &group_desc);
super->s_free_blocks_count--;
return bg * super->s_blocks_per_group + node + super->s_first_data_block;
}
}
return 0;
}
int ext2_free_block(vfs_mount_t *mount, u32_t block_number)
{
ext2_super_block_t *super = mount->super;
if (block_number < super->s_first_data_block || block_number > (super->s_blocks_count + super->s_first_data_block - 1))
return -1; // invalid block number
if (ext2_block_status(mount, block_number) != 1)
return -2; // block not allocated
block_number -= super->s_first_data_block; // now a 0-based block number
int bg = block_number / super->s_blocks_per_group;
ext2_group_desc_t group_desc = ext2_get_group_desc(mount, bg);
ext2_free_node(mount, group_desc.bg_block_bitmap, block_number % super->s_blocks_per_group);
group_desc.bg_free_blocks_count++;
ext2_write_group_desc(mount, bg, &group_desc);
super->s_free_blocks_count++;
return 0;
}
int ext2_resize_inode(vfs_mount_t *mount, u32_t inode_number, u32_t new_size)
{
ext2_inode_t inode;
if ( ext2_read_inode(mount, inode_number, &inode) )
return -1;
ext2_super_block_t *super = mount->super;
int current_blocks = (inode.i_size + (1024 << super->s_log_block_size) - 1) >> (10 + super->s_log_block_size);
int new_blocks = (new_size + (1024 << super->s_log_block_size) - 1) >> (10 + super->s_log_block_size);
if ( new_blocks == current_blocks )
return 0;
// TODO: resize
}
// reserve a node of a inode or block bitmap and mark its entry allocated
u32_t ext2_reserve_node(vfs_mount_t *mount, u32_t bitmap_block_num, u32_t bitmap_size)
{
ext2_super_block_t *super = mount->super;
u32_t *bitmap = kmalloc(1024 << super->s_log_block_size);
int block, max_block = (bitmap_size - 1) / (8192 << super->s_log_block_size) + 1;
for (block = 0; block < max_block; block++)
{
block_read(mount->major, mount->minor, ext2_FSToDiskBlock(bitmap_block_num + block, super),
2 << super->s_log_block_size, bitmap);
int num, num_max = 256 << super->s_log_block_size;
u32_t *block_pointer = bitmap;
int done = 0;
for (num = 0; num < num_max && !done; num++)
{
if (*block_pointer != 0xFFFFFFFF)
{
done = 1;
int bit;
for (bit = 0; bit < 32; bit++)
{
if (!(*block_pointer & (1 << bit)))
{
u32_t node_number = (block * 8192 << super->s_log_block_size) + (num << 5) + bit;
if (node_number < bitmap_size)
{
// found a node, mark it allocated, write the bitmap, return
*block_pointer |= (1 << bit);
block_write(mount->major, mount->minor,
ext2_FSToDiskBlock(bitmap_block_num + block, super),
2 << super->s_log_block_size, bitmap);
kfree(bitmap);
return node_number;
}
kfree(bitmap);
return 0;
}
}
}
block_pointer++;
}
}
kfree(bitmap);
return 0;
}
int ext2_free_node(vfs_mount_t *mount, u32_t bitmap_block_num, u32_t node_number)
{
ext2_super_block_t *super = mount->super;
u32_t block_num = node_number >> (13 + super->s_log_block_size);
byte *block = kmalloc(1024 << super->s_log_block_size);
block_read(mount->major, mount->minor, ext2_FSToDiskBlock(bitmap_block_num + block_num, super),
2 << super->s_log_block_size, block);
u32_t node_bit_offset = node_number % (8192 << super->s_log_block_size);
u32_t node_byte_offset = node_bit_offset >> 3;
block[node_byte_offset] &= (0xFF ^ (1 << (node_bit_offset & 0x7)));
block_write(mount->major, mount->minor, ext2_FSToDiskBlock(bitmap_block_num + block_num, super),
2 << super->s_log_block_size, block);
kfree(block);
return 0;
}
// return how many block groups are on the filesystem
int ext2_num_block_groups(ext2_super_block_t *super)
{
return (super->s_inodes_count / super->s_inodes_per_group) + 1;
}
void ext2_write_super(vfs_mount_t *mount)
{
block_write(mount->major, mount->minor, 2, 2, mount->super);
}
/***************** VFS INTERFACE FUNCTIONS *******************/
// mount the superblock of the filesystem and return a pointer to it, if valid
void *ext2_mount_super(major_t major, minor_t minor)
{
ext2_super_block_t *super = kmalloc(1024);
block_read(major, minor, 2, 2, super);
if (super->s_magic != EXT2_MAGIC) // not an ext2 filesystem
{
kfree(super);
return NULL;
}
return super;
}
// called when we are unmounting this filesystem mount
int ext2_umount_super(vfs_mount_t *mount)
{
ext2_write_super(mount);
return kfree(mount->super); // free memory that the superblock was taking
}
// stat a file, return a structure of info about it
int ext2_stat(vfs_mount_t *mount, u32_t inode_number, vfs_stat_t *stat)
{
if (ext2_inode_status(mount, inode_number) != 1)
return -1;
ext2_inode_t *inode = New(ext2_inode_t);
if ( ext2_read_inode(mount, inode_number, inode) )
{
kfree(inode);
return -2;
}
stat->dev = 0;
switch(inode->i_mode & EXT2_I_MODE_TYPE_MASK)
{
case EXT2_I_MODE_FIFO: stat->type = VFS_FT_FIFO; break;
case EXT2_I_MODE_CHAR: stat->type = VFS_FT_CHAR; stat->dev = inode->i_block[0]; break;
case EXT2_I_MODE_DIR: stat->type = VFS_FT_DIR; break;
case EXT2_I_MODE_BLOCK: stat->type = VFS_FT_BLOCK; stat->dev = inode->i_block[0]; break;
case EXT2_I_MODE_FILE: stat->type = VFS_FT_FILE; break;
case EXT2_I_MODE_SYM: stat->type = VFS_FT_SYMLINK; break;
case EXT2_I_MODE_SOCK: stat->type = VFS_FT_SOCK; break;
default: stat->type = VFS_FT_UNKNOWN; break;
}
stat->size = inode->i_size;
stat->inode = inode_number;
stat->permissions = inode->i_mode & EXT2_I_MODE_ATTR_MASK;
stat->uid = inode->i_uid;
stat->gid = inode->i_gid;
stat->atime = inode->i_atime;
stat->mtime = inode->i_mtime;
stat->ctime = inode->i_ctime;
stat->links = inode->i_links_count;
kfree(inode);
return 0;
}
// what is the inode of the root directory?
u32_t ext2__get_root_dir_inode(vfs_mount_t *mount)
{
return 2;
}
// VFS interface function to dereference a symbolic link
int ext2__link_deref(vfs_mount_t *mount, u32_t link_inode, char *link)
{
ext2_inode_t inode;
if (ext2_read_inode(mount, link_inode, &inode))
return -1;
if ( (inode.i_mode & EXT2_I_MODE_TYPE_MASK) != EXT2_I_MODE_SYM )
return -2;
if (!inode.i_size)
return -4;
if (inode.i_size < 61)
{
memcpy(link, inode.i_block, inode.i_size);
link[inode.i_size] = 0;
return 0;
}
else
{
ext2_open_inode_t *open_inode;
if (!(open_inode = ext2_open_inode(mount, link_inode)))
return -3;
ext2_super_block_t *super = mount->super;
void *buffer = kmalloc(1024 << super->s_log_block_size);
memset(link, 0, 4096);
int copied = 0;
while (copied < 4096)
{
int bytes_read = ext2_read_inode_block(mount, open_inode, buffer);
if (bytes_read == 0)
break;
memcpy(link + copied, buffer, bytes_read);
copied += bytes_read;
}
ext2_close_inode(mount, open_inode);
kfree(buffer);
return 0;
}
}
// VFS interface function to return the number of free inodes
int ext2__free_inodes(vfs_mount_t *mount)
{
ext2_super_block_t *super = mount->super;
return super->s_free_inodes_count;
}
// VFS interface function to return the total number of inodes
int ext2__total_inodes(vfs_mount_t *mount)
{
ext2_super_block_t *super = mount->super;
return super->s_inodes_count;
}
// VFS interface function to return the number of free 512-byte blocks
int ext2__free_blocks(vfs_mount_t *mount)
{
ext2_super_block_t *super = mount->super;
return super->s_free_blocks_count << (1 + super->s_log_block_size);
}
// VFS interface function to return the total number of 512-byte blocks
int ext2__total_blocks(vfs_mount_t *mount)
{
ext2_super_block_t *super = mount->super;
return super->s_blocks_count << (1 + super->s_log_block_size);
}
// VFS interface function to open a directory
int ext2__open_dir(vfs_mount_t *mount, u32_t inode_number, vfs_open_file_t *dir)
{
if (ext2_inode_status(mount, inode_number) != 1)
return -1;
ext2_open_dir_t *open_dir = ext2_open_dir(mount, inode_number);
if (!open_dir)
return -2;
dir->fs_data = open_dir;
return 0;
}
// VFS interface function to read a directory entry from an open directory
int ext2__read_dir(vfs_mount_t *mount, vfs_open_file_t *dir, vfs_dir_entry_t *dentry)
{
ext2_dir_entry_t t_dentry;
int status = ext2_dir_read_entry(mount, dir->fs_data, &t_dentry);
if (status)
return status;
memcpy(dentry->name, t_dentry.name, t_dentry.name_length);
dentry->name[t_dentry.name_length] = 0;
dentry->inode_number = t_dentry.inode;
return 0;
}
// VFS interface function to close an open directory
int ext2__close_dir(vfs_mount_t *mount, vfs_open_file_t *dir)
{
return ext2_close_dir(mount, dir->fs_data);
}
// VFS interface function to open a file for reading a byte at a time
int ext2__open_file(vfs_mount_t *mount, u32_t inode_number, vfs_open_file_t *open_file)
{
if (ext2_inode_status(mount, inode_number) != 1)
return -1;
return 0;
}
// VFS interface function to read a byte from an open file
int ext2__read_file(vfs_mount_t *mount, vfs_open_file_t *open_file)
{
return 0;
}
// VFS interface function to close a byte-file
int ext2__close_file(vfs_mount_t *mount, vfs_open_file_t *open_file)
{
return 0;
}
// VFS interface function to open a file for reading 512-byte blocks at a time
int ext2__open_block_file(vfs_mount_t *mount, u32_t inode_number, vfs_open_file_t *open_file)
{
if (ext2_inode_status(mount, inode_number) != 1)
return -1;
ext2_open_inode_t *open_inode = ext2_open_inode(mount, inode_number);
if (!open_inode)
return -2;
if ((open_inode->inode.i_mode & EXT2_I_MODE_TYPE_MASK) != EXT2_I_MODE_FILE)
{
ext2_close_inode(mount, open_inode);
return -3;
}
ext2__open_block_file_t *open_block_file = New(ext2__open_block_file_t);
open_block_file->open_inode = open_inode;
open_block_file->block = 0;
open_file->fs_data = open_block_file;
return 0;
}
// VFS interface function to read a block from an open block file
// returns the number of bytes read
int ext2__read_block_file(vfs_mount_t *mount, vfs_open_file_t *open_file, void *buffer)
{
ext2_super_block_t *super = mount->super;
ext2__open_block_file_t *open_block_file = open_file->fs_data;
if (ext2_inode_seek(mount, open_block_file->open_inode, ext2_diskToFSBlock(open_block_file->block, super)))
return 0; // EOF
u8_t *block = kmalloc(1024 << super->s_log_block_size);
u32_t file_position_read = (1024 << super->s_log_block_size) * open_block_file->open_inode->block;
u32_t file_position_want = open_block_file->block << 9;
u32_t data_offset = file_position_want - file_position_read;
int bytes_read = ext2_read_inode_block(mount, open_block_file->open_inode, block);
if (bytes_read <= data_offset)
{
kfree(block);
return 0; // EOF
}
memcpy(buffer, block + data_offset, 512);
kfree(block);
open_block_file->block++;
return min(512, bytes_read - data_offset);
}
// VFS interface function to seek to a certain block number of an open block file
int ext2__block_file_seek(vfs_mount_t *mount, vfs_open_file_t *open_file, u32_t block_number)
{
ext2__open_block_file_t *open_block_file = open_file->fs_data;
return ext2_inode_seek(mount, open_block_file->open_inode, ext2_FSToDiskBlock(block_number, mount->super));
}
// VFS interface function to close an open block file
int ext2__close_block_file(vfs_mount_t *mount, vfs_open_file_t *open_file)
{
ext2__open_block_file_t *open_block_file = open_file->fs_data;
ext2_close_inode(mount, open_block_file->open_inode);
kfree(open_block_file);
return 0;
}