<% if @grammar.modulename %> module <%= @grammar.modulename %>; <% end %> import std.stdio; <% @grammar.code_blocks.each do |code| %> <%= code %> <% end %> class <%= @classname %> { /* Result codes. */ public enum : size_t { P_SUCCESS, P_DECODE_ERROR, P_UNEXPECTED_INPUT, P_UNEXPECTED_TOKEN, P_TOKEN, P_DROP, P_EOF, } /* An invalid ID value. */ private enum INVALID_ID = 0xFFFF_FFFFu; alias Token = <%= get_type_for(@grammar.invalid_token_id) %>; enum : Token { <% @grammar.tokens.each_with_index do |token, index| %> TOKEN_<%= token.code_name %> = <%= index %>, <% unless token.id == index %> <% raise "Token ID (#{token.id}) does not match index (#{index}) for token #{token.name}!" %> <% end %> <% end %> INVALID_TOKEN_ID = <%= @grammar.invalid_token_id %>, } alias CodePoint = uint; static immutable string[] token_names = [ <% @grammar.tokens.each_with_index do |token, index| %> "<%= token.name %>", <% end %> ]; static union ParserValue { <% @grammar.ptypes.each do |name, typestring| %> <%= typestring %> v_<%= name %>; <% end %> } /** * A structure to keep track of parser position. * * This is useful for reporting errors, etc... */ static struct Position { /** Input text row (0-based). */ uint row; /** Input text column (0-based). */ uint col; } static class Decoder { /** * Decode a UTF-8 code point. * * Returns one of: * - P_SUCCESS * - P_DECODE_ERROR * - P_EOF */ static size_t decode_code_point(string input, ref CodePoint out_code_point, ref ubyte out_code_point_length) { if (input.length == 0u) { return P_EOF; } char c = input[0]; CodePoint code_point; ubyte code_point_length; if ((c & 0x80u) == 0u) { code_point = c; code_point_length = 1u; } else { ubyte following_bytes; if ((c & 0xE0u) == 0xC0u) { code_point = c & 0x1Fu; following_bytes = 1u; } else if ((c & 0xF0u) == 0xE0u) { code_point = c & 0x0Fu; following_bytes = 2u; } else if ((c & 0xF8u) == 0xF0u) { code_point = c & 0x07u; following_bytes = 3u; } else if ((c & 0xFCu) == 0xF8u) { code_point = c & 0x03u; following_bytes = 4u; } else if ((c & 0xFEu) == 0xFCu) { code_point = c & 0x01u; following_bytes = 5u; } else { return P_DECODE_ERROR; } if (input.length <= following_bytes) { return P_DECODE_ERROR; } code_point_length = cast(ubyte)(following_bytes + 1u); for (size_t i = 0u; i < following_bytes; i++) { char b = input[i + 1u]; if ((b & 0xC0u) != 0x80u) { return P_DECODE_ERROR; } code_point = (code_point << 6u) | (b & 0x3Fu); } } out_code_point = code_point; out_code_point_length = code_point_length; return P_SUCCESS; } } static class Lexer { alias LexerStateID = <%= get_type_for(@lexer.state_table.size) %>; enum LexerStateID INVALID_LEXER_STATE_ID = <%= @lexer.state_table.size %>u; <% user_code_id_count = (@grammar.patterns.map(&:code_id).compact.max || 0) + 1 %> alias UserCodeID = <%= get_type_for(user_code_id_count) %>; enum UserCodeID INVALID_USER_CODE_ID = <%= user_code_id_count %>u; private struct Transition { CodePoint first; CodePoint last; LexerStateID destination_state; } private struct LexerState { <%= get_type_for(@lexer.transition_table.size - 1) %> transition_table_index; <%= get_type_for(@lexer.state_table.map {|ste| ste[:n_transitions]}.max) %> n_transitions; Token token; UserCodeID code_id; bool accepts; } private struct Mode { uint state_table_offset; } private static immutable Transition[] transitions = [ <% @lexer.transition_table.each do |transition_table_entry| %> Transition(<%= transition_table_entry[:first] %>u, <%= transition_table_entry[:last] %>u, <%= transition_table_entry[:destination] %>u), <% end %> ]; private static immutable LexerState[] states = [ <% @lexer.state_table.each do |state_table_entry| %> LexerState(<%= state_table_entry[:transition_table_index] %>u, <%= state_table_entry[:n_transitions] %>u, <% if state_table_entry[:token] %> Token(<%= state_table_entry[:token] %>u), <% else %> INVALID_TOKEN_ID, <% end %> <% if state_table_entry[:code_id] %> <%= state_table_entry[:code_id] %>u, <% else %> INVALID_USER_CODE_ID, <% end %> <%= state_table_entry[:accepts] %>), <% end %> ]; private static immutable Mode[] modes = [ <% @lexer.mode_table.each do |mode_table_entry| %> Mode(<%= mode_table_entry[:state_table_offset] %>), <% end %> ]; public static struct TokenInfo { Position position; size_t length; Token token; ParserValue pvalue; } private string m_input; private size_t m_input_index; private Position m_input_position; private size_t m_mode; this(string input) { m_input = input; m_mode = <%= @lexer.mode_id("default") %>; } /** * Lex the next token in the input stream. * * Returns one of: * - P_TOKEN * - P_DECODE_ERROR * - P_UNEXPECTED_INPUT */ size_t lex_token(TokenInfo * out_token_info) { for (;;) { size_t result = attempt_lex_token(out_token_info); if (result != P_DROP) { return result; } } } /** * Execute user code associated with a lexer pattern. * * @param code_id The ID of the user code block to execute. * @param match Matched text for this pattern. * @param out_token_info Lexer token info in progress. * * @return Token to accept, or invalid token if the user code does * not explicitly return a token. */ private Token user_code(UserCodeID code_id, string match, TokenInfo * out_token_info) { switch (code_id) { <% @grammar.patterns.each do |pattern| %> <% if pattern.code_id %> case <%= pattern.code_id %>u: { <%= expand_code(pattern.code, false, nil, pattern) %> } break; <% end %> <% end %> default: break; } return INVALID_TOKEN_ID; } /** * Attempt to lex the next token in the input stream. * * Returns one of: * - P_TOKEN * - P_DECODE_ERROR * - P_UNEXPECTED_INPUT * - P_DROP */ private size_t attempt_lex_token(TokenInfo * out_token_info) { TokenInfo token_info; token_info.position = m_input_position; token_info.token = INVALID_TOKEN_ID; *out_token_info = token_info; // TODO: remove MatchInfo match_info; size_t unexpected_input_length; size_t result = find_longest_match(match_info, unexpected_input_length); switch (result) { case P_SUCCESS: Token token_to_accept = match_info.accepting_state.token; if (match_info.accepting_state.code_id != INVALID_USER_CODE_ID) { Token user_code_token = user_code(match_info.accepting_state.code_id, m_input[m_input_index..(m_input_index + match_info.length)], &token_info); /* An invalid Token from user_code() means that the user * code did not explicitly return a token. So only override * the token to return if the user code does explicitly * return a token. */ if (user_code_token != INVALID_TOKEN_ID) { token_to_accept = user_code_token; } } /* Update the input position tracking. */ m_input_index += match_info.length; m_input_position.row += match_info.delta_position.row; if (match_info.delta_position.row != 0u) { m_input_position.col = match_info.delta_position.col; } else { m_input_position.col += match_info.delta_position.col; } if (token_to_accept == INVALID_TOKEN_ID) { return P_DROP; } token_info.token = token_to_accept; token_info.length = match_info.length; *out_token_info = token_info; return P_TOKEN; case P_EOF: token_info.token = TOKEN___EOF; *out_token_info = token_info; return P_TOKEN; default: return result; } } struct MatchInfo { size_t length; Position delta_position; const(LexerState) * accepting_state; } /** * Find the longest lexer pattern match at the current position. * * Returns one of: * - P_SUCCESS * - P_DECODE_ERROR * - P_UNEXPECTED_INPUT * - P_EOF */ private size_t find_longest_match( ref MatchInfo out_match_info, ref size_t out_unexpected_input_length) { MatchInfo longest_match; MatchInfo attempt_match; uint current_state = modes[m_mode].state_table_offset; for (;;) { string input = m_input[(m_input_index + attempt_match.length)..(m_input.length)]; CodePoint code_point; ubyte code_point_length; size_t result = Decoder.decode_code_point(input, code_point, code_point_length); switch (result) { case P_SUCCESS: LexerStateID transition_state = transition(current_state, code_point); if (transition_state != INVALID_LEXER_STATE_ID) { attempt_match.length += code_point_length; if (code_point == '\n') { attempt_match.delta_position.row++; attempt_match.delta_position.col = 0u; } else { attempt_match.delta_position.col++; } current_state = transition_state; if (states[current_state].accepts) { attempt_match.accepting_state = &states[current_state]; longest_match = attempt_match; } } else if (longest_match.length > 0) { out_match_info = longest_match; return P_SUCCESS; } else { out_unexpected_input_length = attempt_match.length + code_point_length; return P_UNEXPECTED_INPUT; } break; case P_EOF: /* We hit EOF. */ if (longest_match.length > 0) { /* We have a match, so use it. */ out_match_info = longest_match; return P_SUCCESS; } else if (attempt_match.length != 0) { /* There is a partial match - error! */ out_unexpected_input_length = attempt_match.length; return P_UNEXPECTED_INPUT; } else { /* Valid EOF return. */ return P_EOF; } break; default: return result; } } } private LexerStateID transition(uint current_state, uint code_point) { uint transition_table_index = states[current_state].transition_table_index; for (uint i = 0u; i < states[current_state].n_transitions; i++) { if ((transitions[transition_table_index + i].first <= code_point) && (code_point <= transitions[transition_table_index + i].last)) { return transitions[transition_table_index + i].destination_state; } } return INVALID_LEXER_STATE_ID; } } static class Parser { alias ReduceID = <%= get_type_for(@parser.reduce_table.size) %>; <% # A "symbol" is either a token ID or a rule set ID. %> <% # %> <% # Rule set IDs start after token IDs, so to store either a token ID %> <% # or a rule set ID, we just need to know the maximum rule set ID. %> alias SymbolID = <%= get_type_for(@parser.rule_sets.map(&:last).map(&:id).max) %>; alias StateID = <%= get_type_for(@parser.state_table.size) %>; alias RuleID = <%= get_type_for(@grammar.rules.size) %>; private struct Shift { SymbolID symbol; StateID state; } private struct Reduce { Token token; RuleID rule; SymbolID rule_set; StateID n_states; } private struct ParserState { uint shift_table_index; uint n_shift_entries; ReduceID reduce_table_index; ReduceID n_reduce_entries; } private struct StateValue { uint state; ParserValue pvalue; this(uint state) { this.state = state; } } private static immutable Shift[] shifts = [ <% @parser.shift_table.each do |shift| %> Shift(<%= shift[:token_id] %>u, <%= shift[:state_id] %>u), <% end %> ]; private static immutable Reduce[] reduces = [ <% @parser.reduce_table.each do |reduce| %> Reduce(<%= reduce[:token_id] %>u, <%= reduce[:rule_id] %>u, <%= reduce[:rule_set_id] %>u, <%= reduce[:n_states] %>u), <% end %> ]; private static immutable ParserState[] states = [ <% @parser.state_table.each do |state| %> ParserState(<%= state[:shift_index] %>u, <%= state[:n_shifts] %>u, <%= state[:reduce_index] %>u, <%= state[:n_reduces] %>u), <% end %> ]; private Lexer m_lexer; private ParserValue parse_result; this(string input) { m_lexer = new Lexer(input); } size_t parse() { Lexer.TokenInfo token_info; Token token = INVALID_TOKEN_ID; StateValue[] statevalues = new StateValue[](1); size_t reduced_rule_set = INVALID_ID; ParserValue reduced_parser_value; for (;;) { if (token == INVALID_TOKEN_ID) { size_t lexer_result = m_lexer.lex_token(&token_info); if (lexer_result != P_TOKEN) { return lexer_result; } token = token_info.token; } uint shift_state = INVALID_ID; if (reduced_rule_set != INVALID_ID) { shift_state = check_shift(statevalues[$-1].state, reduced_rule_set); } if (shift_state == INVALID_ID) { shift_state = check_shift(statevalues[$-1].state, token); if ((shift_state != INVALID_ID) && (token == TOKEN___EOF)) { /* Successful parse. */ parse_result = statevalues[$-1].pvalue; return P_SUCCESS; } } if (shift_state != INVALID_ID) { /* We have something to shift. */ statevalues ~= StateValue(shift_state); if (reduced_rule_set == INVALID_ID) { /* We shifted a token, mark it consumed. */ token = INVALID_TOKEN_ID; statevalues[$-1].pvalue = token_info.pvalue; } else { /* We shifted a RuleSet. */ statevalues[$-1].pvalue = reduced_parser_value; ParserValue new_parse_result; reduced_parser_value = new_parse_result; reduced_rule_set = INVALID_ID; } continue; } size_t reduce_index = check_reduce(statevalues[$-1].state, token); if (reduce_index != INVALID_ID) { /* We have something to reduce. */ reduced_parser_value = user_code(reduces[reduce_index].rule, statevalues, reduces[reduce_index].n_states); reduced_rule_set = reduces[reduce_index].rule_set; statevalues.length -= reduces[reduce_index].n_states; continue; } /* Error, unexpected token. */ write("Unexpected token "); if (token != INVALID_TOKEN_ID) { writeln(token_names[token]); } else { writeln("{other}"); } return P_UNEXPECTED_TOKEN; } } @property <%= start_rule_type[1] %> result() { return parse_result.v_<%= start_rule_type[0] %>; } private uint check_shift(uint state, size_t symbol) { uint start = states[state].shift_table_index; uint end = start + states[state].n_shift_entries; for (uint i = start; i < end; i++) { if (shifts[i].symbol == symbol) { // if (symbol != INVALID_TOKEN_ID) // { // writeln("Shifting ", token_names[symbol]); // } // else // { // writeln("Shifting rule set ", symbol); // } return shifts[i].state; } } return INVALID_ID; } private size_t check_reduce(uint state, Token token) { size_t start = states[state].reduce_table_index; size_t end = start + states[state].n_reduce_entries; for (size_t i = start; i < end; i++) { if ((reduces[i].token == token) || (reduces[i].token == INVALID_TOKEN_ID)) { // write("Reducing rule ", reduces[i].rule, ", rule set ", reduces[i].rule_set, " lookahead "); // if (token != INVALID_TOKEN_ID) // { // writeln(token_names[token]); // } // else // { // writeln("{other}"); // } return i; } } return INVALID_ID; } /** * Execute user code associated with a parser rule. * * @param rule The ID of the rule. * * @return Parse value. */ private ParserValue user_code(uint rule, StateValue[] statevalues, uint n_states) { ParserValue _pvalue; switch (rule) { <% @grammar.rules.each do |rule| %> <% if rule.code %> case <%= rule.id %>u: { <%= expand_code(rule.code, true, rule, nil) %> } break; <% end %> <% end %> default: break; } return _pvalue; } } }