propane/assets/parser.c.erb

1079 lines
33 KiB
Plaintext

#include "<%= File.basename(output_file).sub(%r{\.[a-z]+$}, "") %>.h"
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
/**************************************************************************
* Public data
*************************************************************************/
/** Token names. */
const char * <%= @grammar.prefix %>token_names[] = {
<% @grammar.tokens.each_with_index do |token, index| %>
"<%= token.name %>",
<% end %>
};
/**************************************************************************
* User code blocks
*************************************************************************/
<%= @grammar.code_blocks.fetch("", "") %>
/**************************************************************************
* Private types
*************************************************************************/
<% if @grammar.prefix.upcase != "P_" %>
/* Result codes. */
#define P_SUCCESS 0u
#define P_DECODE_ERROR 1u
#define P_UNEXPECTED_INPUT 2u
#define P_UNEXPECTED_TOKEN 3u
#define P_DROP 4u
#define P_EOF 5u
#define P_USER_TERMINATED 6u
<% end %>
/* An invalid ID value. */
#define INVALID_ID ((size_t)-1)
/**************************************************************************
* State initialization
*************************************************************************/
/**
* Initialize lexer/parser context structure.
*
* @param[out] context
* Lexer/parser context structure.
* @param input
* Text input.
* @param input_length
* Text input length.
*/
void <%= @grammar.prefix %>context_init(<%= @grammar.prefix %>context_t * context, uint8_t const * input, size_t input_length)
{
/* New default-initialized context structure. */
<%= @grammar.prefix %>context_t newcontext = {0};
/* Lexer initialization. */
newcontext.input = input;
newcontext.input_length = input_length;
newcontext.mode = <%= @lexer.mode_id("default") %>;
/* Copy to the user's context structure. */
*context = newcontext;
}
/**************************************************************************
* Decoder
*************************************************************************/
/**
* Decode a UTF-8 code point.
*
* @param input
* Text input to decode.
* @param input_length
* Input text length.
* @param[out] out_code_point
* The decoded code point is stored here if the return value is P_SUCCESS.
* @param[out] out_code_point_length
* The number of bytes the code point used is stored here if the return value
* is P_SUCCESS.
*
* @retval P_SUCCESS on a successful code point decode
* @retval P_DECODE_ERROR when an encoding error is observed
* @retval P_EOF when the end of the text input is reached
*/
size_t <%= @grammar.prefix %>decode_code_point(uint8_t const * input, size_t input_length,
<%= @grammar.prefix %>code_point_t * out_code_point, uint8_t * out_code_point_length)
{
if (input_length == 0u)
{
return P_EOF;
}
char c = input[0];
<%= @grammar.prefix %>code_point_t code_point;
uint8_t code_point_length;
if ((c & 0x80u) == 0u)
{
code_point = c;
code_point_length = 1u;
}
else
{
uint8_t following_bytes;
if ((c & 0xE0u) == 0xC0u)
{
code_point = c & 0x1Fu;
following_bytes = 1u;
}
else if ((c & 0xF0u) == 0xE0u)
{
code_point = c & 0x0Fu;
following_bytes = 2u;
}
else if ((c & 0xF8u) == 0xF0u)
{
code_point = c & 0x07u;
following_bytes = 3u;
}
else if ((c & 0xFCu) == 0xF8u)
{
code_point = c & 0x03u;
following_bytes = 4u;
}
else if ((c & 0xFEu) == 0xFCu)
{
code_point = c & 0x01u;
following_bytes = 5u;
}
else
{
return P_DECODE_ERROR;
}
if (input_length <= following_bytes)
{
return P_DECODE_ERROR;
}
code_point_length = (uint8_t)(following_bytes + 1u);
for (size_t i = 0u; i < following_bytes; i++)
{
char b = input[i + 1u];
if ((b & 0xC0u) != 0x80u)
{
return P_DECODE_ERROR;
}
code_point = (code_point << 6u) | (b & 0x3Fu);
}
}
*out_code_point = code_point;
*out_code_point_length = code_point_length;
return P_SUCCESS;
}
/**************************************************************************
* Lexer
*************************************************************************/
/** Lexer state ID type. */
typedef <%= get_type_for(@lexer.state_table.size) %> lexer_state_id_t;
/** Invalid lexer state ID. */
#define INVALID_LEXER_STATE_ID <%= @lexer.state_table.size %>u
/** Lexer user code ID type. */
<% user_code_id_count = (@grammar.patterns.map(&:code_id).compact.max || 0) + 1 %>
typedef <%= get_type_for(user_code_id_count) %> lexer_user_code_id_t;
/** Invalid lexer user code ID. */
#define INVALID_USER_CODE_ID <%= user_code_id_count %>u
/**
* Lexer transition table entry.
*
* An incoming code point matching the range for a transition entry will cause
* the lexer to progress to the destination state.
*/
typedef struct
{
/** First code point in the range for this transition. */
<%= @grammar.prefix %>code_point_t first;
/** Last code point in the range for this transition. */
<%= @grammar.prefix %>code_point_t last;
/** Destination lexer state ID for this transition. */
lexer_state_id_t destination_state;
} lexer_transition_t;
/** Lexer state table entry. */
typedef struct
{
/** Index to the transition table for this state. */
<%= get_type_for(@lexer.transition_table.size - 1) %> transition_table_index;
/** Number of transition table entries for this state. */
<%= get_type_for(@lexer.state_table.map {|ste| ste[:n_transitions]}.max) %> n_transitions;
/** Lexer token formed at this state. */
<%= @grammar.prefix %>token_t token;
/** Lexer user code ID to execute at this state. */
lexer_user_code_id_t code_id;
/** Whether this state matches a lexer pattern. */
bool accepts;
} lexer_state_t;
/** Lexer mode table entry. */
typedef struct
{
/** Offset in the state table to be used for this mode. */
uint32_t state_table_offset;
} lexer_mode_t;
/**
* Lexer match info structure.
*
* This structure holds output values from the lexer upon a successful pattern
* match.
*/
typedef struct
{
/** Number of bytes of input text used to match. */
size_t length;
/** Input text position delta. */
<%= @grammar.prefix %>position_t delta_position;
/** Accepting lexer state from the match. */
lexer_state_t const * accepting_state;
} lexer_match_info_t;
/** Lexer transition table. */
static lexer_transition_t lexer_transition_table[] = {
<% @lexer.transition_table.each do |transition_table_entry| %>
{<%= transition_table_entry[:first] %>u, <%= transition_table_entry[:last] %>u, <%= transition_table_entry[:destination] %>u},
<% end %>
};
/** Lexer state table. */
static lexer_state_t lexer_state_table[] = {
<% @lexer.state_table.each do |state_table_entry| %>
{<%= state_table_entry[:transition_table_index] %>u, <%= state_table_entry[:n_transitions] %>u, <%= state_table_entry[:token] || "INVALID_TOKEN_ID" %>, <%= state_table_entry[:code_id] || "INVALID_USER_CODE_ID" %>, <%= state_table_entry[:accepts] %>},
<% end %>
};
/** Lexer mode table. */
static lexer_mode_t lexer_mode_table[] = {
<% @lexer.mode_table.each do |mode_table_entry| %>
{<%= mode_table_entry[:state_table_offset] %>},
<% end %>
};
/**
* Execute user code associated with a lexer pattern.
*
* @param context
* Lexer/parser context structure.
* @param code_id
* The ID of the user code block to execute.
* @param match
* Matched text for this pattern.
* @param match_length
* Matched text length.
* @param out_token_info
* Lexer token info in progress.
*
* @return Token to accept, or invalid token if the user code does
* not explicitly return a token.
*/
static <%= @grammar.prefix %>token_t lexer_user_code(<%= @grammar.prefix %>context_t * context,
lexer_user_code_id_t code_id, uint8_t const * match,
size_t match_length, <%= @grammar.prefix %>token_info_t * out_token_info)
{
switch (code_id)
{
<% @grammar.patterns.each do |pattern| %>
<% if pattern.code_id %>
case <%= pattern.code_id %>u: {
<%= expand_code(pattern.code, false, nil, pattern) %>
} break;
<% end %>
<% end %>
default: break;
}
return INVALID_TOKEN_ID;
}
/**
* Check if there is a transition from the current lexer state to another
* based on the given input code point.
*
* @param current_state
* Current lexer state.
* @param code_point
* Input code point.
*
* @return Lexer state to transition to, or INVALID_LEXER_STATE_ID if none.
*/
static lexer_state_id_t check_lexer_transition(uint32_t current_state, uint32_t code_point)
{
uint32_t transition_table_index = lexer_state_table[current_state].transition_table_index;
for (uint32_t i = 0u; i < lexer_state_table[current_state].n_transitions; i++)
{
if ((lexer_transition_table[transition_table_index + i].first <= code_point) &&
(code_point <= lexer_transition_table[transition_table_index + i].last))
{
return lexer_transition_table[transition_table_index + i].destination_state;
}
}
return INVALID_LEXER_STATE_ID;
}
/**
* Find the longest lexer pattern match at the current position.
*
* @param context
* Lexer/parser context structure.
* @param[out] out_match_info
* The longest match information is stored here if the return value is
* P_SUCCESS or P_DECODE_ERROR.
* @param[out] out_unexpected_input_length
* The unexpected input length is stored here if the return value is
* P_UNEXPECTED_INPUT.
*
* @reval P_SUCCESS
* A token was successfully lexed.
* @reval P_DECODE_ERROR
* The decoder encountered invalid text encoding.
* @reval P_UNEXPECTED_INPUT
* Input text does not match any lexer pattern.
* @retval P_EOF
* The end of the text input was reached.
*/
static size_t find_longest_match(<%= @grammar.prefix %>context_t * context,
lexer_match_info_t * out_match_info, size_t * out_unexpected_input_length)
{
lexer_match_info_t longest_match = {0};
lexer_match_info_t attempt_match = {0};
*out_match_info = longest_match;
uint32_t current_state = lexer_mode_table[context->mode].state_table_offset;
for (;;)
{
size_t const input_index = context->input_index + attempt_match.length;
uint8_t const * input = &context->input[input_index];
size_t input_length = context->input_length - input_index;
<%= @grammar.prefix %>code_point_t code_point;
uint8_t code_point_length;
size_t result = <%= @grammar.prefix %>decode_code_point(input, input_length, &code_point, &code_point_length);
switch (result)
{
case P_SUCCESS:
lexer_state_id_t transition_state = check_lexer_transition(current_state, code_point);
if (transition_state != INVALID_LEXER_STATE_ID)
{
attempt_match.length += code_point_length;
if (code_point == '\n')
{
attempt_match.delta_position.row++;
attempt_match.delta_position.col = 0u;
}
else
{
attempt_match.delta_position.col++;
}
current_state = transition_state;
if (lexer_state_table[current_state].accepts)
{
attempt_match.accepting_state = &lexer_state_table[current_state];
longest_match = attempt_match;
}
}
else if (longest_match.length > 0)
{
*out_match_info = longest_match;
return P_SUCCESS;
}
else
{
*out_unexpected_input_length = attempt_match.length + code_point_length;
return P_UNEXPECTED_INPUT;
}
break;
case P_EOF:
/* We hit EOF. */
if (longest_match.length > 0)
{
/* We have a match, so use it. */
*out_match_info = longest_match;
return P_SUCCESS;
}
else if (attempt_match.length != 0)
{
/* There is a partial match - error! */
*out_unexpected_input_length = attempt_match.length;
return P_UNEXPECTED_INPUT;
}
else
{
/* Valid EOF return. */
return P_EOF;
}
case P_DECODE_ERROR:
/* If we see a decode error, we may be partially in the middle of
* matching a pattern, so return the attempted match info so that
* the input text position can be updated. */
*out_match_info = attempt_match;
return result;
default:
return result;
}
}
}
/**
* Attempt to lex the next token in the input stream.
*
* @param context
* Lexer/parser context structure.
* @param[out] out_token_info
* The lexed token information is stored here if the return value is
* P_SUCCESS.
*
* @reval P_SUCCESS
* A token was successfully lexed.
* @reval P_DECODE_ERROR
* The decoder encountered invalid text encoding.
* @reval P_UNEXPECTED_INPUT
* Input text does not match any lexer pattern.
* @retval P_DROP
* A drop pattern was matched so the lexer should continue.
* @retval P_USER_TERMINATED
* User code has requested to terminate the lexer.
*/
static size_t attempt_lex_token(<%= @grammar.prefix %>context_t * context, <%= @grammar.prefix %>token_info_t * out_token_info)
{
<%= @grammar.prefix %>token_info_t token_info = {0};
token_info.position = context->text_position;
token_info.token = INVALID_TOKEN_ID;
*out_token_info = token_info; // TODO: remove
lexer_match_info_t match_info;
size_t unexpected_input_length;
size_t result = find_longest_match(context, &match_info, &unexpected_input_length);
switch (result)
{
case P_SUCCESS:
<%= @grammar.prefix %>token_t token_to_accept = match_info.accepting_state->token;
if (match_info.accepting_state->code_id != INVALID_USER_CODE_ID)
{
uint8_t const * match = &context->input[context->input_index];
<%= @grammar.prefix %>token_t user_code_token = lexer_user_code(context,
match_info.accepting_state->code_id, match, match_info.length, &token_info);
/* A TERMINATE_TOKEN_ID return code from lexer_user_code() means
* that the user code is requesting to terminate the lexer. */
if (user_code_token == TERMINATE_TOKEN_ID)
{
return P_USER_TERMINATED;
}
/* An invalid token returned from lexer_user_code() means that the
* user code did not explicitly return a token. So only override
* the token to return if the user code does explicitly return a
* token. */
if (user_code_token != INVALID_TOKEN_ID)
{
token_to_accept = user_code_token;
}
}
/* Update the input position tracking. */
context->input_index += match_info.length;
context->text_position.row += match_info.delta_position.row;
if (match_info.delta_position.row != 0u)
{
context->text_position.col = match_info.delta_position.col;
}
else
{
context->text_position.col += match_info.delta_position.col;
}
if (token_to_accept == INVALID_TOKEN_ID)
{
return P_DROP;
}
token_info.token = token_to_accept;
token_info.length = match_info.length;
*out_token_info = token_info;
return P_SUCCESS;
case P_EOF:
token_info.token = TOKEN___EOF;
*out_token_info = token_info;
return P_SUCCESS;
case P_DECODE_ERROR:
/* Update the input position tracking. */
context->input_index += match_info.length;
context->text_position.row += match_info.delta_position.row;
if (match_info.delta_position.row != 0u)
{
context->text_position.col = match_info.delta_position.col;
}
else
{
context->text_position.col += match_info.delta_position.col;
}
return result;
default:
return result;
}
}
/**
* Lex the next token in the input stream.
*
* @param context
* Lexer/parser context structure.
* @param[out] out_token_info
* The lexed token information is stored here if the return value is
* P_SUCCESS.
*
* @reval P_SUCCESS
* A token was successfully lexed.
* @reval P_DECODE_ERROR
* The decoder encountered invalid text encoding.
* @reval P_UNEXPECTED_INPUT
* Input text does not match any lexer pattern.
* @retval P_USER_TERMINATED
* User code has requested to terminate the lexer.
*/
size_t <%= @grammar.prefix %>lex(<%= @grammar.prefix %>context_t * context, <%= @grammar.prefix %>token_info_t * out_token_info)
{
for (;;)
{
size_t result = attempt_lex_token(context, out_token_info);
if (result != P_DROP)
{
return result;
}
}
}
/**************************************************************************
* Parser
*************************************************************************/
/** Reduce ID type. */
typedef <%= get_type_for(@parser.reduce_table.size) %> reduce_id_t;
/**
* A symbol ID can hold either a token ID or a rule set ID.
*
* Token IDs and rule set IDs share the same namespace, with rule set IDs
* beginning after token IDs end.
*/
typedef <%= get_type_for(@parser.rule_sets.map(&:last).map(&:id).max) %> symbol_id_t;
/** Parser state ID type. */
typedef <%= get_type_for(@parser.state_table.size) %> parser_state_id_t;
/** Parser rule ID type. */
typedef <%= get_type_for(@grammar.rules.size) %> rule_id_t;
/** Parser shift ID type. */
typedef <%= get_type_for(@parser.shift_table.size) %> shift_id_t;
/** Shift table entry. */
typedef struct
{
/** Token or rule set ID. */
symbol_id_t symbol_id;
/** Parser state to shift to. */
parser_state_id_t state_id;
} shift_t;
/** Reduce table entry. */
typedef struct
{
/** Lookahead token. */
<%= @grammar.prefix %>token_t token;
/**
* Rule ID.
*
* This is used to execute the parser user code block associated with a
* grammar rule.
*/
rule_id_t rule;
/**
* Rule set ID.
*
* This is used as the new top symbol ID of the parse stack after this
* reduce action.
*/
symbol_id_t rule_set;
/**
* Number of states leading to this reduce action.
*
* This is the number of entries popped from the parse stack after this
* reduce action.
*/
parser_state_id_t n_states;
<% if @grammar.ast %>
/**
* Map of rule components to rule set child fields.
*/
uint16_t const * rule_set_node_field_index_map;
/**
* Number of rule set AST node fields.
*/
uint16_t rule_set_node_field_array_size;
<% end %>
} reduce_t;
/** Parser state entry. */
typedef struct
{
/** First shift table entry for this parser state. */
shift_id_t shift_table_index;
/** Number of shift table entries for this parser state. */
shift_id_t n_shift_entries;
/** First reduce table entry for this parser state. */
reduce_id_t reduce_table_index;
/** Number of reduce table entries for this parser state. */
reduce_id_t n_reduce_entries;
} parser_state_t;
/**
* Structure to hold a state ID and value pair.
*
* A stack of these structures makes up the parse stack.
*/
typedef struct
{
/** Parser state ID. */
size_t state_id;
/** Parser value from this state. */
<%= @grammar.prefix %>value_t pvalue;
<% if @grammar.ast %>
/** AST node. */
void * ast_node;
<% end %>
} state_value_t;
/** Parser shift table. */
static const shift_t parser_shift_table[] = {
<% @parser.shift_table.each do |shift| %>
{<%= shift[:symbol_id] %>u, <%= shift[:state_id] %>u},
<% end %>
};
<% if @grammar.ast %>
<% @grammar.rules.each do |rule| %>
<% unless rule.flat_rule_set_node_field_index_map? %>
const uint16_t r_<%= rule.name.gsub("$", "_") %><%= rule.id %>_node_field_index_map[<%= rule.rule_set_node_field_index_map.size %>] = {<%= rule.rule_set_node_field_index_map.map {|v| v.to_s}.join(", ") %>};
<% end %>
<% end %>
<% end %>
/** Parser reduce table. */
static const reduce_t parser_reduce_table[] = {
<% @parser.reduce_table.each do |reduce| %>
{<%= reduce[:token_id] %>u, <%= reduce[:rule_id] %>u, <%= reduce[:rule_set_id] %>u, <%= reduce[:n_states] %>u
<% if @grammar.ast %>
<% if reduce[:rule].flat_rule_set_node_field_index_map? %>
, NULL
<% else %>
, &r_<%= reduce[:rule].name.gsub("$", "_") %><%= reduce[:rule].id %>_node_field_index_map[0]
<% end %>
, <%= reduce[:rule].rule_set.ast_fields.size %>
<% end %>
},
<% end %>
};
/** Parser state table. */
static const parser_state_t parser_state_table[] = {
<% @parser.state_table.each do |state| %>
{<%= state[:shift_index] %>u, <%= state[:n_shifts] %>u, <%= state[:reduce_index] %>u, <%= state[:n_reduces] %>u},
<% end %>
};
/* state_values stack functionality */
/** state_values stack type. */
typedef struct
{
size_t length;
size_t capacity;
state_value_t * entries;
} state_values_stack_t;
/**
* Initialize state_values stack structure.
*
* @param stack
* state_values stack structure.
*/
static void state_values_stack_init(state_values_stack_t * stack)
{
const size_t initial_capacity = 10u;
stack->length = 0u;
stack->capacity = initial_capacity;
stack->entries = (state_value_t *)malloc(initial_capacity * sizeof(state_value_t));
}
/**
* Index a state_values stack.
*
* @param stack
* state_values stack structure.
* @param index
* Index to the stack.
*
* @return Pointer to the state value structure at the given index.
*/
static state_value_t * state_values_stack_index(state_values_stack_t * stack, int index)
{
if (index >= 0)
{
return &stack->entries[index];
}
else
{
return &stack->entries[stack->length - (size_t)(unsigned int)(-index)];
}
}
/**
* Push a new state_value to the state_values stack.
*
* @param stack
* state_values stack structure.
*/
static void state_values_stack_push(state_values_stack_t * stack)
{
size_t const current_capacity = stack->capacity;
size_t const current_length = stack->length;
if (current_length >= current_capacity)
{
size_t const new_capacity = current_capacity * 2u;
state_value_t * new_entries = malloc(new_capacity * sizeof(state_value_t));
memcpy(new_entries, stack->entries, current_length * sizeof(state_value_t));
free(stack->entries);
stack->capacity = new_capacity;
stack->entries = new_entries;
}
memset(&stack->entries[current_length], 0, sizeof(state_value_t));
stack->length = current_length + 1u;
}
/**
* Pop entries from a state_values stack.
*
* @param stack
* state_values stack structure.
* @param n
* Number of states to pop.
*/
static void state_values_stack_pop(state_values_stack_t * stack, size_t n)
{
stack->length -= n;
}
/**
* Free memory for a state_values stack structure.
*
* @param stack
* state_values stack structure.
*/
static void state_values_stack_free(state_values_stack_t * stack)
{
free(stack->entries);
}
<% unless @grammar.ast %>
/**
* Execute user code associated with a parser rule.
*
* @param rule The ID of the rule.
*
* @retval P_SUCCESS
* Continue parsing.
* @retval P_USER_TERMINATED
* User requested to terminate parsing.
*/
static size_t parser_user_code(<%= @grammar.prefix %>value_t * _pvalue, uint32_t rule, state_values_stack_t * statevalues, uint32_t n_states, <%= @grammar.prefix %>context_t * context)
{
switch (rule)
{
<% @grammar.rules.each do |rule| %>
<% if rule.code %>
case <%= rule.id %>u: {
<%= expand_code(rule.code, true, rule, nil) %>
} break;
<% end %>
<% end %>
default: break;
}
return P_SUCCESS;
}
<% end %>
/**
* Check if the parser should shift to a new state.
*
* @param state_id
* Parser state ID.
* @param symbol_id
* Incoming token/rule set ID.
*
* @return State to shift to, or INVALID_ID if none.
*/
static size_t check_shift(size_t state_id, size_t symbol_id)
{
uint32_t start = parser_state_table[state_id].shift_table_index;
uint32_t end = start + parser_state_table[state_id].n_shift_entries;
for (uint32_t i = start; i < end; i++)
{
if (parser_shift_table[i].symbol_id == symbol_id)
{
return parser_shift_table[i].state_id;
}
}
return INVALID_ID;
}
/**
* Check if the parser should reduce to a new state.
*
* @param state_id
* Parser state ID.
* @param token
* Incoming token.
*
* @return State to reduce to, or INVALID_ID if none.
*/
static size_t check_reduce(size_t state_id, <%= @grammar.prefix %>token_t token)
{
size_t start = parser_state_table[state_id].reduce_table_index;
size_t end = start + parser_state_table[state_id].n_reduce_entries;
for (size_t i = start; i < end; i++)
{
if ((parser_reduce_table[i].token == token) ||
(parser_reduce_table[i].token == INVALID_TOKEN_ID))
{
return i;
}
}
return INVALID_ID;
}
/**
* Run the parser.
*
* @param context
* Lexer/parser context structure.
*
* @retval P_SUCCESS
* The parser successfully matched the input text. The parse result value
* can be accessed with <%= @grammar.prefix %>result().
* @retval P_UNEXPECTED_TOKEN
* An unexpected token was encountered that does not match any grammar rule.
* The function p_token(&context) can be used to get the unexpected token.
* @reval P_DECODE_ERROR
* The decoder encountered invalid text encoding.
* @reval P_UNEXPECTED_INPUT
* Input text does not match any lexer pattern.
*/
size_t <%= @grammar.prefix %>parse(<%= @grammar.prefix %>context_t * context)
{
<%= @grammar.prefix %>token_info_t token_info;
<%= @grammar.prefix %>token_t token = INVALID_TOKEN_ID;
state_values_stack_t statevalues;
size_t reduced_rule_set = INVALID_ID;
<% if @grammar.ast %>
void * reduced_parser_node;
<% else %>
<%= @grammar.prefix %>value_t reduced_parser_value;
<% end %>
state_values_stack_init(&statevalues);
state_values_stack_push(&statevalues);
size_t result;
for (;;)
{
if (token == INVALID_TOKEN_ID)
{
size_t lexer_result = <%= @grammar.prefix %>lex(context, &token_info);
if (lexer_result != P_SUCCESS)
{
result = lexer_result;
break;
}
token = token_info.token;
}
size_t shift_state = INVALID_ID;
if (reduced_rule_set != INVALID_ID)
{
shift_state = check_shift(state_values_stack_index(&statevalues, -1)->state_id, reduced_rule_set);
}
if (shift_state == INVALID_ID)
{
shift_state = check_shift(state_values_stack_index(&statevalues, -1)->state_id, token);
if ((shift_state != INVALID_ID) && (token == TOKEN___EOF))
{
/* Successful parse. */
<% if @grammar.ast %>
context->parse_result = (Start *)state_values_stack_index(&statevalues, -1)->ast_node;
<% else %>
context->parse_result = state_values_stack_index(&statevalues, -1)->pvalue;
<% end %>
result = P_SUCCESS;
break;
}
}
if (shift_state != INVALID_ID)
{
/* We have something to shift. */
state_values_stack_push(&statevalues);
state_values_stack_index(&statevalues, -1)->state_id = shift_state;
if (reduced_rule_set == INVALID_ID)
{
/* We shifted a token, mark it consumed. */
<% if @grammar.ast %>
Token * token_ast_node = malloc(sizeof(Token));
token_ast_node->token = token;
token_ast_node->pvalue = token_info.pvalue;
state_values_stack_index(&statevalues, -1)->ast_node = token_ast_node;
<% else %>
state_values_stack_index(&statevalues, -1)->pvalue = token_info.pvalue;
<% end %>
token = INVALID_TOKEN_ID;
}
else
{
/* We shifted a RuleSet. */
<% if @grammar.ast %>
state_values_stack_index(&statevalues, -1)->ast_node = reduced_parser_node;
<% else %>
state_values_stack_index(&statevalues, -1)->pvalue = reduced_parser_value;
<%= @grammar.prefix %>value_t new_parse_result = {0};
reduced_parser_value = new_parse_result;
<% end %>
reduced_rule_set = INVALID_ID;
}
continue;
}
size_t reduce_index = check_reduce(state_values_stack_index(&statevalues, -1)->state_id, token);
if (reduce_index != INVALID_ID)
{
/* We have something to reduce. */
<% if @grammar.ast %>
if (parser_reduce_table[reduce_index].n_states > 0)
{
void ** node_fields = calloc(parser_reduce_table[reduce_index].rule_set_node_field_array_size, sizeof(void *));
if (parser_reduce_table[reduce_index].rule_set_node_field_index_map == NULL)
{
for (size_t i = 0; i < parser_reduce_table[reduce_index].n_states; i++)
{
node_fields[i] = state_values_stack_index(&statevalues, -(int)parser_reduce_table[reduce_index].n_states + (int)i)->ast_node;
}
}
else
{
for (size_t i = 0; i < parser_reduce_table[reduce_index].n_states; i++)
{
node_fields[parser_reduce_table[reduce_index].rule_set_node_field_index_map[i]] = state_values_stack_index(&statevalues, -(int)parser_reduce_table[reduce_index].n_states + (int)i)->ast_node;
}
}
reduced_parser_node = node_fields;
}
else
{
reduced_parser_node = NULL;
}
<% else %>
<%= @grammar.prefix %>value_t reduced_parser_value2 = {0};
if (parser_user_code(&reduced_parser_value2, parser_reduce_table[reduce_index].rule, &statevalues, parser_reduce_table[reduce_index].n_states, context) == P_USER_TERMINATED)
{
return P_USER_TERMINATED;
}
reduced_parser_value = reduced_parser_value2;
<% end %>
reduced_rule_set = parser_reduce_table[reduce_index].rule_set;
state_values_stack_pop(&statevalues, parser_reduce_table[reduce_index].n_states);
continue;
}
/* A token was successfully lexed, so the input text position was
* advanced. However, this is an unexpected token, so we want to reset
* the context text position to point to the token rather than the text
* after it, so that if the caller wants to report the error position,
* it will point to the correct position of the unexpected token. */
context->text_position = token_info.position;
context->token = token;
result = P_UNEXPECTED_TOKEN;
break;
}
state_values_stack_free(&statevalues);
return result;
}
/**
* Get the parse result value.
*
* @param context
* Lexer/parser context structure.
*
* @return Parse result value.
*/
<% if @grammar.ast %>
Start * <%= @grammar.prefix %>result(<%= @grammar.prefix %>context_t * context)
<% else %>
<%= start_rule_type[1] %> <%= @grammar.prefix %>result(<%= @grammar.prefix %>context_t * context)
<% end %>
{
<% if @grammar.ast %>
return context->parse_result;
<% else %>
return context->parse_result.v_<%= start_rule_type[0] %>;
<% end %>
}
/**
* Get the current text input position.
*
* @param context
* Lexer/parser context structure.
*
* @return Current text position.
*/
<%= @grammar.prefix %>position_t <%= @grammar.prefix %>position(<%= @grammar.prefix %>context_t * context)
{
return context->text_position;
}
/**
* Get the user terminate code.
*
* @param context
* Lexer/parser context structure.
*
* @return User terminate code.
*/
size_t <%= @grammar.prefix %>user_terminate_code(<%= @grammar.prefix %>context_t * context)
{
return context->user_terminate_code;
}
/**
* Get the parse token.
*
* @return Parse token.
*/
<%= @grammar.prefix %>token_t <%= @grammar.prefix %>token(<%= @grammar.prefix %>context_t * context)
{
return context->token;
}