sierpinski-gtk/SierpinskiDA.cc
josh b24809f39e initial dragging attempt... failed so far
git-svn-id: svn://anubis/misc/sierpinski-gtk@256 bd8a9e45-a331-0410-811e-c64571078777
2010-10-28 16:49:32 +00:00

224 lines
4.7 KiB
C++

#include <stdlib.h> /* rand() */
#include <GL/gl.h>
#include <GL/glu.h>
#include <iostream>
#include <gtkmm/entry.h>
#include <gdkmm/cursor.h>
#include "SierpinskiDA.h"
#include "Vector.h"
using namespace std;
SierpinskiDA::SierpinskiDA(const Glib::RefPtr<const Gdk::GL::Config> & config,
Gtk::Entry & n_points_entry)
: Gtk::GL::DrawingArea(config),
m_n_points_entry(n_points_entry)
{
set_gl_capability(config);
set_events(Gdk::POINTER_MOTION_MASK
| Gdk::BUTTON_PRESS_MASK
| Gdk::BUTTON_RELEASE_MASK
| Gdk::SCROLL_MASK);
m_dragging = false;
}
void SierpinskiDA::regenerate_clicked()
{
regenerate(atoi(m_n_points_entry.get_text().c_str()));
queue_draw();
}
void SierpinskiDA::regenerate(int npts)
{
#define deg2rad(x) ((x)/180.0*M_PI)
const static float pts[][3] = {
{0, 0, sqrt(1 + sin(deg2rad(60))*sin(deg2rad(60))+1.5*1.5)},
{0, 1, 0},
{sin(deg2rad(60)), -cos(deg2rad(60)), 0},
{-sin(deg2rad(60)), -cos(deg2rad(60)), 0}
};
gl_begin();
glNewList(m_dl, GL_COMPILE);
glBegin(GL_POINTS);
double pt[3];
double r = rand() / (double) RAND_MAX;
for (int i = 0; i < 3; i++)
{
pt[i] = pts[0][i] + r * pts[1][i] - pts[0][i];
}
for (int i = 0; i < npts; i++)
{
glVertex3dv(pt);
int pt_idx = rand() & 0x3;
for (int j = 0; j < 3; j++)
{
pt[j] = (pt[j] + pts[pt_idx][j]) / 2.0;
}
}
glEnd();
glEndList();
gl_end();
}
bool SierpinskiDA::gl_begin()
{
Glib::RefPtr<Gdk::GL::Window> glwindow = get_gl_window();
return glwindow->gl_begin(get_gl_context());
}
void SierpinskiDA::gl_end()
{
Glib::RefPtr<Gdk::GL::Window> glwindow = get_gl_window();
glwindow->gl_end();
}
bool SierpinskiDA::draw()
{
if (!gl_begin())
return false;
glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glMultMatrixf(m_drag_matrix);
glCallList(m_dl);
glPopMatrix();
if (get_gl_window()->is_double_buffered())
get_gl_window()->swap_buffers();
else
glFlush();
gl_end();
return true;
}
bool SierpinskiDA::on_motion_notify_event(GdkEventMotion * event)
{
if (m_dragging)
{
Vector v = ptrToDragVector();
Vector cross = m_dragBegin * v;
if (cross.mag2() > 0.5)
{
gl_begin();
glPushMatrix();
glLoadIdentity();
glRotated(180.0 * acos(m_dragBegin % v) / M_PI,
cross[0], cross[1], cross[2]);
glGetFloatv(GL_MODELVIEW_MATRIX, &m_drag_matrix[0]);
glPopMatrix();
gl_end();
}
queue_draw();
}
return true;
}
bool SierpinskiDA::on_button_press_event(GdkEventButton * event)
{
if (event->button == 1)
{
m_dragging = true;
m_dragBegin = ptrToDragVector();
}
return false;
}
bool SierpinskiDA::on_button_release_event(GdkEventButton * event)
{
if (event->button == 1)
{
m_dragging = false;
gl_begin();
glPushMatrix();
glLoadIdentity();
glGetFloatv(GL_MODELVIEW_MATRIX, &m_drag_matrix[0]);
glPopMatrix();
gl_end();
}
return false;
}
bool SierpinskiDA::on_scroll_event(GdkEventScroll * event)
{
return false;
}
void SierpinskiDA::on_realize()
{
Gtk::GL::DrawingArea::on_realize();
if (!gl_begin())
return;
glViewport(0, 0, get_width(), get_height());
m_dl = glGenLists(1);
glEnable(GL_DEPTH_TEST);
#if 0
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
float color[] = {1, 1, 1, 1};
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, color);
#endif
glColor3f(1, 1, 1);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(60, get_width()/(double)get_height(), 0.01, 1000.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glGetFloatv(GL_MODELVIEW_MATRIX, &m_drag_matrix[0]);
gluLookAt(0, -3, 1.5,
0, 0, 1,
0, 0, 1);
gl_end();
regenerate(10000);
}
/*
* called on widget resizes
*/
bool SierpinskiDA::on_configure_event(GdkEventConfigure * event)
{
if (!gl_begin())
return false;
glViewport(0, 0, get_width(), get_height());
gl_end();
return true;
}
bool SierpinskiDA::on_expose_event(GdkEventExpose * event)
{
return draw();
}
Vector SierpinskiDA::ptrToDragVector()
{
int x, y;
get_pointer(x, y);
int w = get_width();
int h = get_height();
double r = min(w, h) / 2.0;
double xd = (x - w/2.0) / r;
double yd = (h/2.0 - y) / r;
double d2 = xd*xd + yd*yd;
double z = d2 >= 1.0 ? 0.0 : sqrt(1 - d2);
return Vector(xd, yd, z).normalize();
}