introduced tunable shot angle
This commit is contained in:
parent
f1809bf193
commit
8a74d6dd2a
@ -12,14 +12,17 @@ using namespace sf;
|
||||
/* GRAVITY can really be any arbitrary value that makes the shot's speed
|
||||
* feel right. Increasing the gravity will decrease the amount of time
|
||||
* it takes the shot to hit its target. */
|
||||
#define GRAVITY 30
|
||||
#define GRAVITY 100
|
||||
|
||||
#define SHOT_ANGLE 30
|
||||
|
||||
/* We model the shot's position using a parametric equation based on time.
|
||||
* Assuming a constant 45° shot angle simplifies the equations.
|
||||
* x = vt
|
||||
* y = h + vt - gt²/2
|
||||
* = (-g/2)t² + vt + h
|
||||
* x = vct
|
||||
* y = h + vst - gt²/2
|
||||
* = (-g/2)t² + vst + h
|
||||
* where
|
||||
* s = sin(shot angle)
|
||||
* c = cos(shot angle)
|
||||
* v = shot speed
|
||||
* t = time
|
||||
* g = gravity
|
||||
@ -28,36 +31,40 @@ using namespace sf;
|
||||
* Given a target distance of d, we want to figure out a speed that makes
|
||||
* (x, y) = (d, 0) a valid point on the trajectory.
|
||||
* Then:
|
||||
* d = vt
|
||||
* 0 = (-g/2)t² + vt + h
|
||||
* d = vct
|
||||
* 0 = (-g/2)t² + vst + h
|
||||
* So:
|
||||
* v = d/t
|
||||
* 0 = (-g/2)t² + (d/t)t + h
|
||||
* 0 = (-g/2)t² + d + h
|
||||
* v = d/ct
|
||||
* 0 = (-g/2)t² + (d/ct)st + h
|
||||
* 0 = (-g/2)t² + ds/c + h
|
||||
* According to the quadratic formula (x = (-b ± sqrt(b² - 4ac))/2a),
|
||||
* t = ±sqrt(-4(-g/2)(d+h)) / 2(-g/2)
|
||||
* -tg = ±sqrt(2g(d+h))
|
||||
* t²g² = 2g(d+h)
|
||||
* t² = 2(d+h)/g
|
||||
* t = sqrt(2(d+h)/g)
|
||||
* t = ±sqrt(-4(-g/2)(ds/c+h)) / 2(-g/2)
|
||||
* -tg = ±sqrt(2g(ds/c+h))
|
||||
* t²g² = 2g(ds/c+h)
|
||||
* t² = 2(ds/c+h)/g
|
||||
* t = sqrt(2(ds/c+h)/g)
|
||||
* Now that we know the time at which this point occurs, we can solve for
|
||||
* the shot speed (v)
|
||||
* v = d/t
|
||||
* v = d / sqrt(2(d+h)/g)
|
||||
* v = d/ct
|
||||
* v = d / c / sqrt(2(ds/c+h)/g)
|
||||
*/
|
||||
Shot::Shot(const Vector2f & origin, double direction, double target_dist)
|
||||
{
|
||||
m_direction = Vector2f(cos(direction), sin(direction));
|
||||
m_origin = origin;
|
||||
m_speed = target_dist /
|
||||
sqrt(2 * (target_dist + INITIAL_SHOT_HEIGHT) / GRAVITY);
|
||||
m_cos_a = cos(SHOT_ANGLE * M_PI / 180.0);
|
||||
m_sin_a = sin(SHOT_ANGLE * M_PI / 180.0);
|
||||
m_speed = target_dist / m_cos_a /
|
||||
sqrt(2 * (target_dist * m_sin_a / m_cos_a + INITIAL_SHOT_HEIGHT) /
|
||||
GRAVITY);
|
||||
}
|
||||
|
||||
Vector3f Shot::get_position()
|
||||
{
|
||||
float time = m_clock.getElapsedTime().asSeconds();
|
||||
float horiz_dist = m_speed * time;
|
||||
float z = INITIAL_SHOT_HEIGHT + m_speed * time - GRAVITY * time * time / 2.0;
|
||||
float horiz_dist = m_speed * m_cos_a * time;
|
||||
float z = INITIAL_SHOT_HEIGHT + m_speed * m_sin_a * time -
|
||||
GRAVITY * time * time / 2.0;
|
||||
Vector2f xy = m_origin + m_direction * horiz_dist;
|
||||
return Vector3f(xy.x, xy.y, z);
|
||||
}
|
||||
|
@ -13,6 +13,8 @@ class Shot
|
||||
sf::Vector2f m_origin;
|
||||
sf::Vector2f m_direction;
|
||||
double m_speed;
|
||||
double m_cos_a;
|
||||
double m_sin_a;
|
||||
sf::Clock m_clock;
|
||||
};
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user