214 lines
5.2 KiB
C++
214 lines
5.2 KiB
C++
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include "GLMatrix.h"
|
|
|
|
const GLMatrix GLMatrix::Identity;
|
|
|
|
static void normalize(GLfloat * vec)
|
|
{
|
|
GLfloat len = sqrtf(vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2]);
|
|
vec[0] /= len;
|
|
vec[1] /= len;
|
|
vec[2] /= len;
|
|
}
|
|
|
|
static void cross(GLfloat * out, GLfloat * in1, GLfloat * in2)
|
|
{
|
|
out[0] = in1[1] * in2[2] - in1[2] * in2[1];
|
|
out[1] = in1[2] * in2[0] - in1[0] * in2[2];
|
|
out[2] = in1[0] * in2[1] - in1[1] * in2[0];
|
|
}
|
|
|
|
GLMatrix::GLMatrix()
|
|
{
|
|
load_identity();
|
|
}
|
|
|
|
GLMatrix::GLMatrix(const GLMatrix & orig)
|
|
{
|
|
memcpy(&m_mat, &orig.m_mat, sizeof(m_mat));
|
|
}
|
|
|
|
void GLMatrix::load_identity()
|
|
{
|
|
memset(m_mat, 0, sizeof(m_mat));
|
|
for (int i = 0; i < 4; i++)
|
|
m_mat[i][i] = 1.0f;
|
|
}
|
|
|
|
GLMatrix operator*(const GLMatrix & left, const GLMatrix & right)
|
|
{
|
|
GLMatrix result = left;
|
|
result.multiply(right);
|
|
return result;
|
|
}
|
|
|
|
void GLMatrix::multiply(const GLMatrix & other)
|
|
{
|
|
GLMatrix tmp = *this;
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
for (int j = 0; j < 4; j++)
|
|
{
|
|
GLfloat v = 0.0;
|
|
for (int p = 0; p < 4; p++)
|
|
{
|
|
v += tmp.m_mat[p][i] * other.m_mat[j][p];
|
|
}
|
|
m_mat[j][i] = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
void GLMatrix::translate(GLfloat x, GLfloat y, GLfloat z)
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
m_mat[3][i] += m_mat[0][i] * x + m_mat[1][i] * y + m_mat[2][i] * z;
|
|
}
|
|
}
|
|
|
|
void GLMatrix::scale(GLfloat x, GLfloat y, GLfloat z)
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
m_mat[0][i] *= x;
|
|
m_mat[1][i] *= y;
|
|
m_mat[2][i] *= z;
|
|
}
|
|
}
|
|
|
|
void GLMatrix::rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
|
|
{
|
|
GLfloat p = x*x + y*y + z*z;
|
|
if (p != 1.0f)
|
|
{
|
|
GLfloat scale = sqrt(p);
|
|
x /= scale;
|
|
y /= scale;
|
|
z /= scale;
|
|
}
|
|
GLfloat c = cos(M_PI * angle / 180.0);
|
|
GLfloat s = sin(M_PI * angle / 180.0);
|
|
GLMatrix mult;
|
|
GLfloat oc = 1 - c;
|
|
mult.m_mat[0][0] = x * x * oc + c;
|
|
mult.m_mat[1][0] = x * y * oc - z * s;
|
|
mult.m_mat[2][0] = x * z * oc + y * s;
|
|
mult.m_mat[3][0] = 0.0;
|
|
mult.m_mat[0][1] = y * x * oc + z * s;
|
|
mult.m_mat[1][1] = y * y * oc + c;
|
|
mult.m_mat[2][1] = y * z * oc - x * s;
|
|
mult.m_mat[3][1] = 0.0;
|
|
mult.m_mat[0][2] = x * z * oc - y * s;
|
|
mult.m_mat[1][2] = y * z * oc + x * s;
|
|
mult.m_mat[2][2] = z * z * oc + c;
|
|
mult.m_mat[3][2] = 0.0;
|
|
mult.m_mat[0][3] = 0.0;
|
|
mult.m_mat[1][3] = 0.0;
|
|
mult.m_mat[2][3] = 0.0;
|
|
mult.m_mat[3][3] = 1.0;
|
|
*this = *this * mult;
|
|
}
|
|
|
|
void GLMatrix::frustum(GLfloat left, GLfloat right,
|
|
GLfloat bottom, GLfloat top,
|
|
GLfloat z_near, GLfloat z_far)
|
|
{
|
|
GLMatrix mult;
|
|
GLfloat rl = right - left;
|
|
GLfloat tb = top - bottom;
|
|
GLfloat fn = z_far - z_near;
|
|
mult.m_mat[0][0] = 2 * z_near / rl;
|
|
mult.m_mat[2][0] = (right + left) / rl;
|
|
mult.m_mat[1][1] = 2 * z_near / tb;
|
|
mult.m_mat[2][1] = (top + bottom) / tb;
|
|
mult.m_mat[2][2] = - (z_far + z_near) / fn;
|
|
mult.m_mat[3][2] = - 2 * z_far * z_near / fn;
|
|
mult.m_mat[2][3] = -1.0;
|
|
mult.m_mat[3][3] = 0.0f;
|
|
multiply(mult);
|
|
}
|
|
|
|
void GLMatrix::look_at(GLfloat eye_x, GLfloat eye_y, GLfloat eye_z,
|
|
GLfloat center_x, GLfloat center_y, GLfloat center_z,
|
|
GLfloat up_x, GLfloat up_y, GLfloat up_z)
|
|
{
|
|
GLfloat forward[3], side[3], up[3];
|
|
forward[0] = center_x - eye_x;
|
|
forward[1] = center_y - eye_y;
|
|
forward[2] = center_z - eye_z;
|
|
normalize(forward);
|
|
up[0] = up_x;
|
|
up[1] = up_y;
|
|
up[2] = up_z;
|
|
cross(side, forward, up);
|
|
normalize(side);
|
|
cross(up, side, forward);
|
|
GLMatrix mult;
|
|
mult.m_mat[0][0] = side[0];
|
|
mult.m_mat[0][1] = side[1];
|
|
mult.m_mat[0][2] = side[2];
|
|
mult.m_mat[1][0] = up[0];
|
|
mult.m_mat[1][1] = up[1];
|
|
mult.m_mat[1][2] = up[2];
|
|
mult.m_mat[2][0] = -forward[0];
|
|
mult.m_mat[2][1] = -forward[1];
|
|
mult.m_mat[2][2] = -forward[2];
|
|
multiply(mult);
|
|
translate(-eye_x, -eye_y, -eye_z);
|
|
}
|
|
|
|
void GLMatrix::perspective(GLfloat fovy, GLfloat aspect,
|
|
GLfloat z_near, GLfloat z_far)
|
|
{
|
|
GLMatrix mult;
|
|
GLfloat f = 1.0 / tan(M_PI * fovy / 360.0);
|
|
GLfloat nf = z_near - z_far;
|
|
mult.m_mat[0][0] = f / aspect;
|
|
mult.m_mat[1][1] = f;
|
|
mult.m_mat[2][2] = (z_far + z_near) / nf;
|
|
mult.m_mat[3][2] = (2 * z_far * z_near) / nf;
|
|
mult.m_mat[2][3] = -1.0;
|
|
mult.m_mat[3][3] = 0.0f;
|
|
multiply(mult);
|
|
}
|
|
|
|
void GLMatrix::ortho(GLfloat left, GLfloat right,
|
|
GLfloat bottom, GLfloat top,
|
|
GLfloat z_near, GLfloat z_far)
|
|
{
|
|
GLMatrix mult;
|
|
GLfloat rl = right - left;
|
|
GLfloat tb = top - bottom;
|
|
GLfloat fn = z_far - z_near;
|
|
mult.m_mat[0][0] = 2 / rl;
|
|
mult.m_mat[3][0] = - (right + left) / rl;
|
|
mult.m_mat[1][1] = 2 / tb;
|
|
mult.m_mat[3][1] = - (top + bottom) / tb;
|
|
mult.m_mat[2][2] = -2 / fn;
|
|
mult.m_mat[3][2] = - (z_far + z_near) / fn;
|
|
multiply(mult);
|
|
}
|
|
|
|
void GLMatrix::to_uniform(GLint uniform)
|
|
{
|
|
glUniformMatrix4fv(uniform, 1, GL_TRUE, &m_mat[0][0]);
|
|
}
|
|
|
|
void GLMatrix::push()
|
|
{
|
|
m_stack.push(Mat4_s());
|
|
memcpy(&m_stack.top().mat, &m_mat, sizeof(m_mat));
|
|
}
|
|
|
|
void GLMatrix::pop()
|
|
{
|
|
if (m_stack.size() > 0)
|
|
{
|
|
memcpy(&m_mat, &m_stack.top().mat, sizeof(m_mat));
|
|
m_stack.pop();
|
|
}
|
|
}
|